Abstract:
An imaging assembly and processing system that includes a sample platform having a target region which can hold a sample, where the sample can be marked with fluorescent or phosphorescent markers. The imaging assembly can have an excitation light module proximate to the sample platform that emits light to excite the markers, and a lens module positioned to receive emission light from excited markers in target region. At least one series filter assembly or interference filter can be arranged in front of, behind, or both in front of and behind the lens module. The assembly includes a light sensor and a processor and imaging module configured to process data captured by the light sensor. Images of the sample are generated based on the emission light from the sample that transmit through and are filtered by the lens assembly and series filter assembly or interference filter.
Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.