Abstract:
Processes for treating aqueous solutions to remove dissolved selenium species, for example in the presence of an excess of sulphate anions, which include the use of strongly basic anion exchange resins, or co-precipitation and adsorption of the selenate (and selenite) with mixed ferrous and ferric iron, or combinations thereof. Co-precipitation and adsorption of selenate may take place in an electrolytic cell in the presence of ferrous and/or ferric iron.
Abstract:
The invention provides waste water treatment processes utilizing an ion exchange resin to remove sulphate anions, while adjusting the pH of the ion exchange loading solution with carbon dioxide gas. The effect of the resin loading reactions is that dissolved sulphate is replaced with sequestered carbon dioxide gas, in the form of dissolved bicarbonate, in the treated water and the cations are not removed from the solution.
Abstract:
The invention provides waste water treatment processes utilizing an ion exchange resin to remove sulphate anions, while adjusting the pH of the ion exchange loading solution with carbon dioxide gas. The effect of the resin loading reactions is that dissolved sulphate is replaced with sequestered carbon dioxide gas, in the form of dissolved bicarbonate, in the treated water and the cations are not removed from the solution.