Abstract:
A method for fabricating silicon nanostructures. An etch uniformity improving layer is deposited on a substrate. A catalyst (e.g., thin film of Ti/Au) is deposited on the substrate or the etch uniformity improving layer, where the catalyst is contacting a portion of the substrate or the etch uniformity layer. The catalyst and the substrate or etch uniformity improving layer are exposed to an etchant, where the catalyst causes etching of the substrate thereby creating etched nanostructures.
Abstract:
Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
Abstract:
A system for assembling fields from a source substrate onto a second substrate. The source substrate includes fields. The system further includes a transfer chuck that is used to pick at least four of the fields from the source substrate in parallel to be transferred to the second substrate, where the relative positions of the at least four of the fields is redetermined.
Abstract:
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub- 10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
Abstract:
A diagnostic chip for detecting biomarkers and trace amounts of nanoparticles in chemical mixtures or in water. The diagnostic chip includes one or more inputs, where a sample containing differently sized particles is introduced into at least one of these inputs. Furthermore, the diagnostic chip includes multiple separation regions, where the sample is pressurized as it passes through the separation regions. Each separation region includes a deterministic lateral displacement array, where the deterministic lateral displacement array in two or more of these separation regions has a different etch depth profile. In this manner, the diagnostic chip effectively detects biomarkers and trace amounts of nanoparticles in chemical mixtures or in water.
Abstract:
Various embodiments of the present technology generally relate to semiconductor device architectures and manufacturing techniques. More specifically, some embodiments of the present technology relate to silicon etching using catalyst influenced chemical etching technology with application to three-dimensional memory architectures and transistors. CICE is a catalyst based etching method that can be used on semiconductors as well as multilayers of the semiconductors. Various embodiments of the CICE process can use a catalyst to etch semiconducting substrates and to fabricate high aspect ratio features. A fabrication tool for this purpose is also disclosed. This shall enable adoption of this technology in making semiconductor devices.
Abstract:
A method and system for etching a semiconductor substrate using catalyst influenced chemical etching. A group of independently controlled discrete actuators are configured to control a depth of an etch of a material on a substrate, where at least two of the group of independently controlled discrete actuators has distinct actuation values. Furthermore, the etch depth has a variation of less than 10% of a feature height across the substrate.
Abstract:
Various embodiments of the present technology generally relate to semiconductor device architectures and manufacturing techniques. More specifically, some embodiments of the present technology relate to large area metrology and process control for anisotropic chemical etching. Catalyst influenced chemical etching (CICE) can be used to create high aspect ratio semiconductor structures with dimensions in the nanometer to millimeter scale with anisotropic and smooth sidewalls. However, all aspects of the CICE process must be compatible with the equipment used in semiconductor fabrication facilities today, and they must be scalable to enable wafer scale processing with high yield and reliability. This invention relates to metrology and control of etch and CMOS compatible methods of patterning the catalyst and removing it without damaging the etched structures.