Abstract:
The invention relates to a preparation of a concrete having a compression resistance of at least 400 MPa and a fracturation energy of at least 1 000 J/m2. A mix containing substantially cement, fine sand, amorphous silica, crushed quartz, steel wool, a fluidifying agent and water in specific proportions is mixed and, after setting, the concrete is fired at a temperature of at least 250 °C. The figure is a micrography showing the microstructure of concrete according to the invention. The invention provides particularly for the making of concrete parts in replacement of steel, for example anchoring heads for prestressed cables.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.
Abstract:
A metal fiber concrete composition for molding a concrete element, the composition being essentially constituted by a Portland cement, granular elements, fine elements for pozzolan reaction, metal fibers, a dispersing agent, optionally other additives, and water. The preponderant granular elements have a maximum grain size D of not more than 800 micrometers. The preponderant metal fibers have individual lengths 1 lying in the range 4 mm to 20 mm. The ratio R of the mean length L of the fibers divided by said maximum size D of the granular elements is not less than 10. The amount of preponderant metal fibers is such that the volume of preponderant metal fibers lies in the range 1.0% to 4% of the volume of the concrete after setting.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.
Abstract:
A metal fiber concrete composition for molding a concrete element, the composition being essentially constituted by a Portland cement, granular elements, fine elements for pozzolan reaction, metal fibers, a dispersing agent, optionally other additives, and water. The preponderant granular elements have a maximum grain size D of not more than 800 micrometers. The preponderant metal fibers have individual lengths 1 lying in the range 4 mm to 20 mm. The ratio R of the mean length L of the fibers divided by said maximum size D of the granular elements is not less than 10. The amount of preponderant metal fibers is such that the volume of preponderant metal fibers lies in the range 1.0% to 4% of the volume of the concrete after setting.
Abstract:
A metal fiber concrete composition for molding a concrete element, the composition being essentially constituted by a Portland cement, granular elements, fine elements for pozzolan reaction, metal fibers, a dispersing agent, optionally other additives, and water. The preponderant granular elements have a maximum grain size D of not more than 800 micrometers. The preponderant metal fibers have individual lengths 1 lying in the range 4 mm to 20 mm. The ratio R of the mean length L of the fibers divided by said maximum size D of the granular elements is not less than 10. The amount of preponderant metal fibers is such that the volume of preponderant metal fibers lies in the range 1.0% to 4% of the volume of the concrete after setting.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.
Abstract:
A method and composition for preparing concrete elements comprising the steps of mixing a composition comprising the following components expressed in parts by weight (p): a) 100 p of Portland cement; b) 30 p to 100 p or better 40 p to 70 p of fine sand having a grain size of at least 150 micrometers; c) 10 p to 40 p or better 20 p to 30 p of amorphous silicon having a grain size of less than 0.5 micrometers; d) 20 p to 60 p or better 30 p to 50 p of ground quartz having a grain size of less than 10 micrometers; e) 25 p to 100 p, or better 45 p to 80 p of steel wool; f) a dispersing agent; g) 13 p to 26 p or better 15 p to 22 p of water; and after setting, curing the concrete at a temperature of 250 DEG C. or higher, for a length of time sufficient to transform cement hydration products into crystalline hydrates of the xonotlite type; thus eliminating substantially all of the free water and at least the main part of the adsorbed and chemically bonded water.