Abstract:
A battery, a battery module, a battery pack, and an electric vehicle are provided. The battery includes a metal shell and a plurality of electrode core assemblies sealed in the metal shell and arranged in sequence. The electrode core assemblies are connected in series. Each of the electrode core assemblies includes at least one electrode core. The electrode core assemblies are sealed in a packaging film. An air pressure between the metal shell and the packaging film is lower than an air pressure outside the metal shell. An air pressure inside the packaging film is lower than the air pressure between the metal shell and the packaging film.
Abstract:
A secondary battery electrode plate and a preparation method therefor, and a secondary battery are provided. The secondary battery electrode plate includes a current collector and a first active material layer. The first active material layer is located on a surface of the current collector and contains first active substance particles The first active substance particles have an equivalent sphericity X1 as represented by formula X1=3/(S1R1ρ1), where 0.05≤X1≤0.8; R1 is a median radius of the first active substance particles in a unit of μm; S1 is a specific surface area of the first active substance particles in a unit of m2/g; and ρ1 is true density of the first active substance particles in a unit of g/cm3.
Abstract:
A battery includes a case and a battery core assembly disposed in the case, the battery core assembly includes a plurality of battery core groups and an receiving space holding the plurality of battery core groups, the battery core groups are connected in series, and the battery core group includes at least one battery core; a separator plate is disposed between at least two adjacent battery core groups, the separator plate divides the receiving space into a plurality of receiving cavities, each of the receiving cavities holds one or more battery core groups , and a cavity wall of the receiving cavity comprised by a connection of the separator plate and a separation membrane; and the battery further includes a liquid injection channel and the liquid injection channel in a sealed state, the liquid injection channel is disposed on at least one of the separation membranes and the separator plates.
Abstract:
The present invention provides a lithium-ion battery, including: a housing and a separator located inside the housing, where the separator separates internal space of the housing into a plurality of accommodation cavities, battery core sets are disposed inside the accommodation cavities, the battery core sets each include at least one pole shank, and the battery core sets are connected in series; and at least one separator is provided with a liquid injection hole, and the liquid injection hole is used to connect two adjacent accommodation cavities on two sides of the separator; and a block mechanism, where the block mechanism is located inside the housing, the block mechanism enables the liquid injection hole to be in a predetermined state, and the predetermined state includes an open state and a closed state. The battery provided in the present invention ensures isolation and safety of each battery core set while facilitating liquid injection.
Abstract:
An end cover assembly for a battery with a core comprises a contact terminal, a conductive element, and a thermistor. The conductive element is in electrical communication with the core of the battery. The thermistor is disposed between the terminal and the conductive element. The thermistor electrically connects the terminal and the conductive element when the temperature of the battery is below a predetermined temperature. The thermistor electrically disconnects the terminal and the conductive element when the temperature of the battery is above the predetermined temperature.
Abstract:
A cell, a power battery pack, and an electric vehicle are provided. The cell includes a cell body, and the cell body has a length L, a width H and a thickness D. The length L of the cell body is greater than the width H, the width H of the cell body is greater than the thickness D, the length L of the cell body is greater than 600 mm, and the length L and the width H of the cell body satisfy L/H=4-21.
Abstract:
A battery pack and an electric vehicle are provided. The battery pack includes a housing; and a plurality of cells, provided in the housing, wherein the sum V1 of the volumes of the plurality of cells and the volume V2 of the battery pack satisfy V1/V2≥55%. The battery pack has a first direction and a second direction perpendicular to each other. A length direction of the cell is arranged along the first direction of the battery pack, and the plurality of cells are arranged along the second direction of the battery pack. The cell comprises a cell body, and the length of the cell body is 400-2500 mm.
Abstract:
The present invention provides a lithium-ion battery, including: a housing and a separator located inside the housing, where the separator separates internal space of the housing into a plurality of accommodation cavities, battery core sets are disposed inside the accommodation cavities, the battery core sets each include at least one pole shank, and the battery core sets are connected in series; and at least one separator is provided with a liquid injection hole, and the liquid injection hole is used to connect two adjacent accommodation cavities on two sides of the separator; and a block mechanism, where the block mechanism is located inside the housing, the block mechanism enables the liquid injection hole to be in a predetermined state, and the predetermined state includes an open state and a closed state. The battery provided in the present invention ensures isolation and safety of each battery core set while facilitating liquid injection.
Abstract:
A power battery pack includes: a pack body; a plurality of cells, disposed in the pack body; the cell having a length L0, a width H0, and a thickness D0, where at least one cell meets: L0>H0≥D0, a length direction of the cell is arranged along a width direction of a vehicle body of the electric vehicle, and in the width direction of the electric vehicle, the length L0 of the cell and a size W of the vehicle body of the electric vehicle in the width direction meet: 46%≤L0/W≤76%; or at least one cell meets: L0>H0≥D0, a length direction of the cell is arranged along a length direction of a vehicle body of the electric vehicle, and in the length direction of the electric vehicle, the length L0 of the cell and a size X of the vehicle body of the electric vehicle in the length direction meet: 40%≤L0/W≤76%.
Abstract:
A battery pack includes a housing having a bottom surface and a top surface and a battery assembly in the housing. The battery assembly includes structural reinforcing members and cell sequences formed by connecting multiple cells. An outer surface of the cell includes a bottom surface, a top surface, first and second lateral surfaces. The bottom surface of the cell faces the bottom surface of the housing, and the top surface of the cell faces the top surface of the housing. The first lateral surface has a largest area. The multiple cells are arranged with second lateral surfaces thereof facing each other to form a cell sequence, and the structural reinforcing members are fixedly bonded with first lateral surfaces of cells in the cell sequence. The battery assembly is supported in the housing by the bottom surface of the housing.