Abstract:
A manufacturing method of a solar cell module is disclosed. The method includes: welding in high frequency a conductive wire constituted by a metal wire with a cell; superposing an upper cover plate, a front adhesive layer, the cell, a back adhesive layer and a back plate in sequence, and laminating them to obtain the solar cell module.
Abstract:
A solar cell unit, a solar cell array (30), a solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell unit includes a cell (31) which consists of a cell substrate (311) and a secondary grid line (312) disposed on a front surface of the cell substrate (311); a conductive wire (32) intersected and welded with the secondary grid line (312), and the secondary grid line (312) having a width in a welding position with the conductive wire (32) greater than a width thereof in a non-welding position.
Abstract:
A solar cell array (30), a solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell array (30) includes a plurality of cells (31) arranged in an n×m matrix form, in which in a row of cells, adjacent cells (31) are connected by the plurality of conductive wires (32), and at least two conductive wires (32) are constituted by a metal wire extending reciprocally between surfaces of the adjacent cells (31); in two adjacent rows of cells (31), a cell (31) in a a th row and a cell in a (a+1) th row are connected by the plurality of conductive wires (32), and at least two conductive wires (32) are constituted by a metal wire extending reciprocally between a surface of a cell (31) in a a th row and a surface of a cell (31) in a (a+1) th row. A secondary grid line (312) and a short grid line (33) are disposed on a front surface of the cell (31), and the secondary grid line (312) includes a middle secondary grid line (3122) intersected with the conductive wire (32) and an edge secondary grid line (3121) non-intersected with the conductive wire (32), the short grid line (33) being connected with the conductive wire (32) or at least one middle secondary grid line (3122).
Abstract:
A solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell module includes (100) an upper cover plate (10), a front adhesive layer (20), a cell array (30), a back adhesive layer (40) and a back plate (50) superposed in sequence, the cell array (30) comprising a plurality of cells (31) arranged in a matrix form of multiple rows and multiple columns, at least two rows of the cells (31) being connected by a plurality of conductive wires, at least two conductive wires being constituted by a metal wire which extends reciprocally between surfaces of the cells (31) in different rows, the conductive wires contacting with the cells (31), the front adhesive layer (20) being in direct contact with the conductive wires and filling between adjacent conductive wires.
Abstract:
A solar cell support assembly includes: a first supporting (1), a second supporting members (7), a beam (2) pivotably connected to the first supporting member (1) and configured to mount the solar cell thereon, a first swing bar (4) connected to the beam (2) and configured to rotate the beam (2); a second swing bar (6) pivotably connected to the second supporting member (7); a first pushrod (51) pivotably connected to the first swing bar (4) and the second swing bar (6); a second pushrod (52) pivotably connected to the first swing bar (4) and the second swing bar (6); and a driving device (9) pivotably connected to the second swing bar (6) and configured to drive the second swing bar (6) to rotate relative to the second supporting member (7).
Abstract:
A solar cell unit, a solar cell array (30), a solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell unit includes a cell (31) which consists of a cell substrate (311) and a secondary grid line (312) disposed on a front surface of the cell substrate (311); a conductive wire (32) intersected and welded with the secondary grid line (312), and the secondary grid line (312) having a width in a welding position with the conductive wire (32) greater than a width thereof in a non-welding position.
Abstract:
A solar cell support assembly includes: a first supporting (1), a second supporting members (7), a beam (2) pivotably connected to the first supporting member (1) and configured to mount the solar cell thereon, a first swing bar (4) connected to the beam (2) and configured to rotate the beam (2); a second swing bar (6) pivotably connected to the second supporting member (7); a first pushrod (51) pivotably connected to the first swing bar (4) and the second swing bar (6); a second pushrod (52) pivotably connected to the first swing bar (4) and the second swing bar (6); and a driving device (9) pivotably connected to the second swing bar (6) and configured to drive the second swing bar (6) to rotate relative to the second supporting member (7).