Abstract:
A system for enabling interoperability among various kinds of communications equipment and information transmission formats on the battlefield or during tactical missions. The system includes a multi-message translator (MMT) for translating a source text message having a first set of word fields defined according to a source message format, into a sink message having a second set of word fields defined according to a sink message format. The system also includes a voice bridging gateway (VBG) for bridging multiple voice communication networks having associated transmission protocols that are incompatible with one another. Dismounted soldiers obtain location based services including geo-referenced maps, and tactical communications including voice and text messaging, using smart phones or other lightweight COTS client devices that link through a personal networking node (PNN) server to one or both of the MMT and the VBG.
Abstract:
ABSTRACT OF THE DISCLOSURE A system and method for converting a non-cognitive radio into a cognitive radio is presented. A cognitive radio system includes, a non-cognitive radio; an electronic device, a spectrum sensing logic and configuration and management logic. The electronic device is connected to the non-cognitive radio so that it receives and/or transmits messages to/from a wireless network. The configuration and management logic is connected between the non-cognitive radio and the spectrum sensing logic. The spectrum sensing logic and the configuration and management logic are removable from the non-cognitive radio allowing the cognitive radio to operate in a non-cognitive mode. The spectrum sensing logic senses a wireless environment to determine available frequencies and available channels. The configuration and management logic transmits available frequencies, available channels or other spectrum data to a remote spectrum manager that is managing access to the wireless network.
Abstract:
A system and method for converting a non-cognitive radio into a cognitive radio is presented. A cognitive radio system includes, a non-cognitive radio; an electronic device, a spectrum sensing logic and configuration and management logic. The electronic device is connected to the non-cognitive radio so that it receives and/or transmits messages to/from a wireless network. The configuration and management logic is connected between the non-cognitive radio and the spectrum sensing logic. The spectrum sensing logic and the configuration and management logic are removable from the non-cognitive radio allowing the cognitive radio to operate in a non-cognitive mode. The spectrum sensing logic senses a wireless environment to determine available frequencies and available channels. The configuration and management logic transmits available frequencies, available channels or other spectrum data to a remote spectrum manager that is managing access to the wireless network.