Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate, dual transistor, inverter storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
A FET device for operation at high voltages includes a substrate, a first well and a second well within the substrate that are doped with implants of a first type and second type, respectively. The first and second wells define a p-n junction. A field oxide layer within the second well defines a first surface region to receive a drain contact. A third well is located at least partially in the first well, includes doped implants of the second type, and is adapted to receive a source contact. As such, the third well defines a channel between itself and the second well within the first well. A gate is disposed over the channel. At least a first portion of the gate is disposed over the p-n junction, and includes doped implants of the first type. A number of permutations are allowed for doping the remainder of the gate.
Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate, dual transistor, inverter storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate and a four transistor storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
A high-voltage LDMOSFET includes a semiconductor substrate, in which a gate well is formed. A source well and a drain well are formed on either side of the gate well, and include insulating regions within them that do not reach the full depth. An insulating layer is disposed on the substrate, covering the gate well and a portion of the source well and the drain well. A conductive gate is disposed on the insulating layer. Biasing wells are formed adjacent the source well and the drain well. A deep well is formed in the substrate such that it communicates with the biasing wells and the gate well, while extending under the source well and the drain well, such as to avoid them. Biasing contacts at the top of the biasing wells bias the deep well, and therefore also the gate well.
Abstract:
A FET device for operation at high voltages includes a substrate, a first well and a second well within the substrate that are doped with implants of a first type and second type, respectively. The first and second wells define a p-n junction. A field oxide layer within the second well defines a first surface region to receive a drain contact. A third well is located at least partially in the first well, includes doped implants of the second type, and is adapted to receive a source contact. As such, the third well defines a channel between itself and the second well within the first well. A gate is disposed over the channel. At least a first portion of the gate is disposed over the p-n junction, and includes doped implants of the first type. A number of permutations are allowed for doping the remainder of the gate.
Abstract:
A high-voltage LDMOSFET includes a semiconductor substrate, in which a gate well is formed. A source well and a drain well are formed on either side of the gate well, and include insulating regions within them that do not reach the full depth. An insulating layer is disposed on the substrate, covering the gate well and a portion of the source well and the drain well. A conductive gate is disposed on the insulating layer. Biasing wells are formed adjacent the source well and the drain well. A deep well is formed in the substrate such that it communicates with the biasing wells and the gate well, while extending under the source well and the drain well, such as to avoid them. Biasing contacts at the top of the biasing wells bias the deep well, and therefore also the gate well.
Abstract:
FIG. 1 is a perspective view of a magnet showing our new design; FIG. 2 is a front elevation view thereof; FIG. 3 is a rear elevation view thereof; FIG. 4 is a left side elevation view thereof; FIG. 5 is a right side elevation view thereof; FIG. 6 is a top plan view thereof; and, FIG. 7 is a bottom plan view thereof. The broken line showing of a magnet is for the purpose of illustrating portions of the article and forms no part of the claimed design.