Abstract:
This invention describes the advantages of forming integrated biochips including microarrays comprised of tiled assemblies. For a given biochip of this invention, the tiles may have similar or dissimilar properties. Novel, high-speed manufacturing processes are described to assemble such biochips. A preferred embodiment is the use of micro-machined feeders for placing the tiles in the assembly process.
Abstract:
The present invention is directed to a substrate having a plurality of microfeatures that provide a high surface area and are open to provide ready access to fluids and components therein. Methods of making the high surface area substrates are described and include generating microfeatures and/or microstructures on the surface of the substrate.
Abstract:
This invention describes the advantages of forming integrated biochips including microarrays comprised of tiled assemblies. For a given biochip of this invention, the tiles may have similar or dissimilar properties. Novel, high-speed manufacturing processes are described to assemble such biochips. A preferred embodiment is the use of micro-machined feeders for placing the tiles in the assembly process.
Abstract:
The present invention is directed to a substrate having a plurality of microfeatures that provide a high surface area and are open to provide ready access to fluids and components therein. Methods of making the high surface area substrates are described and include generating microfeatures and/or microstructures on the surface of the substrate.
Abstract:
The present invention is directed to a substrate having a plurality of microfeatures that provide a high surface area and are open to provide ready access to fluids and components therein. Methods of making the high surface area substrates are described and include generating microfeatures and/or microstructures on the surface of the substrate.