Abstract:
The present invention provides adiabatic plug flow reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors comprise one or more designs that minimize the production of by-products at a desired conversion.
Abstract:
The present invention provides adiabatic plug flow reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors comprise one or more designs that minimize the production of by-products at a desired conversion.
Abstract:
The present invention provides improved processes for preparing halogenated alkanes. In particular, the processes comprise reacting an alkene, a halogenated alkene, or combinations thereof and a halogenated methane with at least one chlorine atom.
Abstract:
The present invention provides improved processes for preparing halogenated alkanes. In particular, the processes comprise reacting an alkene, a halogenated alkene, or combinations thereof and a halogenated methane with at least one chlorine atom.
Abstract:
The present invention provides a weir quench, an apparatus utilizing the weir quench and processes incorporating the same. The weir quench incorporates an inlet having an inner diameter (Di) and an upper chamber having an inner diameter (Duc), wherein the inlet inner diameter (Di) is at least 90% of the upper chamber inner diameter (Duc). The apparatus constitutes a reactor having an outlet with an inner diameter fluidly coupled with the weir quench inlet, wherein the ratio of the reactor oulet inner diameter (Dr) to the weir quench inlet diameter (Di) is greater than one. The weir quench, and apparatus are advantageously utilized in processes utilizing a limiting reagent.