Abstract:
A hydraulic actuation system (10) and method of assembly for disconnecting a secondary driveline (27) can be used in an all-wheel drive (AWD) vehicle (14) having a power take-off unit (PTU) (42) for transferring rotary power to the secondary driveline (27). The hydraulic actuation system (10) can include a source of pressurized fluid (50), a hydraulically actuated synchronizer (44) for synchronizing rotary motion between the PTU (42) and the secondary driveline (27), at least one hydraulically actuated clutch assembly (11a, 11b) for connecting and disconnecting secondary vehicle wheels (29a, 29b) with respect to the secondary driveline (27), an area control solenoid (ACS) valve (54) in fluid communication with the source of pressurized fluid (50) to modulate pressure to engage and disengage the synchronizer (44), and at least one variable force solenoid (VFS) valve (56a, 56b) in fluid communication with the source of pressurized fluid (50) to modulate pressure to the at least one hydraulically actuated clutch assembly (11a, 11b).
Abstract:
A variable spring rate absorber is adjusted to provide the vibration attenuation characteristics needed to match current operating conditions. Control of a variable spring rate absorber determines the desired absorber spring rate for existing conditions based on a number of inputs and predetermined characterization tables. Once the spring rate is calculated, a predetermined map may be used to determine the absorber setting needed to achieve the desired spring rate. A sensor may be used to measure the actual state of the absorber to determine the extent to which the setting must be adjusted to achieve the desired spring rate.
Abstract:
A transmission system includes a transmission housing and a countershaft having no less than two gears, with the gears defining a plurality of gear ratios. The transmission system also includes a module housing, a first output shaft rotatably coupled to the countershaft, and a second output shaft rotatably coupled to the countershaft. The transmission system further includes a first clutch configured to selectively rotatably couple the first output shaft to the countershaft. The transmission system also includes a second clutch configured to selectively rotatably couple the second output shaft to the countershaft. The transmission system further includes an electric machine configured to deliver rotational power to at least one of the first and second output shafts to deliver rotational power to the countershaft. The countershaft is rotatably coupled to either of the first and second output shafts for all of the gear ratios.
Abstract:
A control system (44) for a clutch (18) of a manual transmission (16) in a vehicle (10) having an ECU (22), an engine (14), a pedal (26) having a sensor (42), a slave (34) in fluid communication with a master (36); and at least one input (24). The control system (44) includes a pump (50), a valve (52) in fluid communication with the slave (34) and pump (50), and a controller (46) responsive to the ECU (22) and operable in a plurality of modes for selectively cooperating with the pedal (26) to actuate the slave (34) and modulate the clutch (18) under predetermined engine (14) and vehicle (10) operating conditions. The controller (46) is movable between modes in response to signals from the ECU (22) representing predetermined changes in one or more of: engine speed, engine load, vehicle speed, transmission gear, pedal position, or input state.