Abstract:
An access port for subcutaneous implantation is disclosed. The access port may include a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. The access port may further include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. The subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is included on a molded insert that is sandwiched between base and cap portions of the access port so as to be visible after implantation via x-ray imaging technology.
Abstract:
An access port for subcutaneous implantation is disclosed. The access port may include a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. The access port may further include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. The subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is included on a molded insert that is sandwiched between base and cap portions of the access port so as to be visible after implantation via x-ray imaging technology.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Abstract:
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.