Abstract:
This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
Abstract:
A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
Abstract:
A sensing chip attached to a bandage monitors the healing process of a wound by detecting growth factors, thrombin and fibrinogen. The complementary metal-oxide semiconductor includes a functionalized working electrode, functionalized counter electrode and functionalized reference electrode. The healing progress is stimulated by generating oxygen in the wound.
Abstract:
An implantable diagnostic device in accordance with the present disclosure provides various benefits such as a compact size thereby allowing implanting of the device inside animate objects; low cost due to incorporation of inexpensive detection circuitry and the use of conventional IC fabrication techniques; re-usability by heating thereby allowing multiple diagnostic tests to be performed without discarding the device; and a configuration that allows performing of simultaneous and/or sequential diagnostic tests for detecting one or more similar or dissimilar target molecules concurrently or at different times.
Abstract:
An implantable device having a communication system, a sensor, and a monolithic substrate is described. The monolithic substrate has an integrated sensor circuit configured to process input from the sensor into a form conveyable by the communication system.
Abstract:
An implantable diagnostic device in accordance with the present disclosure provides various benefits such as a compact size thereby allowing implanting of the device inside animate objects; low cost due to incorporation of inexpensive detection circuitry and the use of conventional IC fabrication techniques; re-usability by heating thereby allowing multiple diagnostic tests to be performed without discarding the device; and a configuration that allows performing of simultaneous and/or sequential diagnostic tests for detecting one or more similar or dissimilar target molecules concurrently or at different times.
Abstract:
An implantable device contains a drug or biosensing compound, protected from the external environment within a human body by several barriers which are broken upon activation of the device through electrothermal, chemical, and mechanical processes. The device allows accurate and repeated dosing within a human body, thus reducing the number of implantation procedures required. This device extends the lifetime of a biosensor, reducing the number of implantation procedures required.
Abstract:
A sensing device allows detection of biological quantities in ways that are minimally invasive. Micrometer or nanometer sized needles allow sensing of bodily fluids in a minimally invasive method. The device comprises electronics and power harvesting. Antennas or coils allow communication and power harvesting from an external device, which can be attached to smartphones to allow operation of a camera and camera light for biosensing.
Abstract:
A fully integrated small size implantable sensing device is described, which can include a sensor and an electronic circuit to interface with the sensor and communicate with an external device. Various fabrication methods for the sensing device are described, including provision of wells, created using same fabrication technology as the electronic circuit, to contain electrodes of the sensor and corresponding functionalization chemicals. Such implantable sensing device can be used for a variety of electrochemical measuring applications within a living body as well as actuation by injecting a current into the living body.
Abstract:
The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.