Abstract:
Described herein are coating compositions comprising metal nanostructures and one or more conductive polymers, and nanocomposite films formed thereof.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
Disclosed herein are optical stacks that are stable to light exposure by incorporating light-stabilizers (like l-phenyl-lH-tetrazole-5-thiol (PTZT))and/or oxygen barriers. OCA is the acronym for optical clear adhesive.
Abstract:
Provided are a method of isolating and purifying metal nanowires from a crude and a complex reaction mixture that includes relatively high aspect ratio nanostructures as well as nanostructures of low aspect ratio shapes, and conductive films made of the purified nanostructures.
Abstract:
Fluorescent particles including quantum dots and fluorescent beads bound to multifunctional scaffolds can be used as taggants. The taggants can be further bound to a substrate of interest through binding sites on the multifunctional scaffolds.
Abstract:
A method of forming an integrated circuit layer material is described, comprising depositing a layer of templates on a substrate, said template including a first binding site having an affinity for the substrate, a second binding site having an affinity for a target integrated circuit material and a protecting material coupled to the second binding site via a labile linkage to prevent the binding site from binding to the target integrated circuit material; exposing the template to an external stimulus to degrade the labile linkage; removing the protecting material; and binding the integrated circuit material to the second binding site.
Abstract:
This disclosure is related to photosensitive ink compositions comprising conductive nanostructures and a photosensitive compound, and method of using the same.
Abstract:
Disclosed herein are photo-stable optical stacks including a transparent conductive film formed by silver nanostructures or silver mesh. In particular, one or more light stabilizers (such as transition metal salts) are incorporated into one or more constituent layers of the optical stack.
Abstract:
Reliable and durable conductive films formed of conductive nanostructures are described. The conductive films show substantially constant sheet resistance following prolonged and intense light exposure.
Abstract:
A method of forming monodispersed metal nanowires comprising: forming a reaction mixture including a metal salt, a capping agent and a quaternary ammonium chloride in a reducing solvent at a first temperature; and forming metal nanowires by reducing the metal salt in the reaction mixture.