Abstract:
A structure having a pattern is manufactured. An elastically deformable process target is elastically deformed in an inplane direction from a first state. A first pattern is formed on the process target deformed. The elastically deformed process target is made close to or returned to the first state, thereby to form a second pattern having a size and a shape at least one of which differs from those of the first pattern.
Abstract:
A porous scintillator crystal capable of suppressing scattering of light that represents a high spatial resolution is provided. The porous scintillator crystal comprises a porous structure including voids, wherein the porous structure is a phase-separated structure having voids formed therein and comprises materials constituting a eutectic composition of the phase-separated structure and at least one void in the porous structure extend in a direction perpendicular to a principal plane of the porous scintillator crystal.
Abstract:
Provided is a scintillator having a function of waveguiding scintillation light to a photodetector and having a structure for increasing an amount of absorption of radiation. The scintillator has a first surface (10) and a second surface (11) which are not located on a same surface, and includes: a first phase (12); and a second phase (13) having a refractive index higher than that of the first phase and having a linear attenuation coefficient different from that of the first phase, in which one of the first phase and the second phase includes multiple columnar portions arranged in a direction from the first surface to the second surface, and the multiple columnar portions are stacked in a state in which end faces of the columnar portions are partly offset with respect to each other in a direction parallel to the first surface or the second surface.
Abstract:
Provided is a scintillator used for radiation detection in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of banks for preventing crosstalk. The scintillator has a waveguide function instead of the banks or the like. The scintillator includes: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase for covering a side of the first crystal phase. The first crystal phase includes a perovskite type oxide material including at least one element selected from the group consisting of Lu and Gd, and a rare earth element as an emission center. The first crystal phase emits light by radiation excitation.
Abstract:
A porous scintillator crystal capable of suppressing scattering of light that represents a high spatial resolution is provided. The porous scintillator crystal comprises a porous structure including voids, wherein the porous structure is a phase-separated structure having voids formed therein and comprises materials constituting a eutectic composition of the phase-separated structure and at least one void in the porous structure extend in a direction perpendicular to a principal plane of the porous scintillator crystal.
Abstract:
In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
Abstract:
Disclosed herein is a field-effect transistor comprising a channel comprised of an oxide semiconductor material including In and Zn. The atomic compositional ratio expressed by In/(In + Zn) is not less than 35 atomic% and not more than 55 atomic%. Ga is not included in the oxide semiconductor material or the atomic compositional ratio expressed by Ga/(In + Zn + Ga) is set to be 30 atomic% or lower when Ga is included therein. The transistor has improved S-value and field-effect mobility.
Abstract:
A metal oxide material is provided which is represented by the compositional formula: Bi2(Sr1-xCax)3+nCu2+nO(12+3n)- delta wherein 0 x)2(SryCa 1-y-z-A z)p (Cu1-rA r)qO delta wherein 0 is an element selected from Groups IIIb, IVb and Vb; A is an element selected from Groups Ia, IIa and IVb; and A is an element selected from Groups IVa, Va, VIa and VIII. The metal oxide may further comprise an element selected from lanthanoids and yttrium. The metal oxide material shows superconductivity at a temperature not lower than the boiling point of liquid helium.
Abstract:
Es werden ein Röntgenstrahlabbildungsgerät und ein Röntgenstrahlabbildungsverfahren bereitgestellt, die ein Differenzialphasenbild oder ein Phasenbild eines Gegenstands durch zumindest einen einzelnen Abbildungsbetrieb erhalten können. Das Röntgenstrahlabbildungsgerät gemäß der vorliegenden Erfindung umfasst ein Phasengitter (130), ein Absorptionsgitter (150), eine Erfassungseinrichtung (170) und eine arithmetische Einheit (180). Die arithmetische Einheit (180) führt einen Fourier-Transformationsschritt zum Ausführen einer Fourier-Transformation für eine Intensitätsverteilung eines Moiré-Musters, die durch die Erfassungseinrichtung erhalten wird, und zum Erhalten eines Ortsfrequenzspektrums aus. Ebenso führt die arithmetische Einheit (180) einen Phasenwiedergewinnungsschritt zum Trennen eines Spektrums, das einer Trägerfrequenz entspricht, von einem Ortsfrequenzspektrum, das in dem Fourier-Transformationsschritt erhalten wird, zum Ausführen einer inversen Fourier-Transformation für das getrennte Spektrum und zum Erhalten eines Differenzialphasenbilds aus.
Abstract:
Изобретениеотноситсяк тонкопленочнымтранзисторам, использующимоксидныйполупроводник. Сущностьизобретения: вполевомтранзисторе, содержащемканал, выполненныйизоксидногополупроводниковогоматериала, включающегов себя In и Zn, атомноекомпозиционноеотношение, выражаемоев виде In/(In+Zn), составляетнеменьше, чем 35 атомных %, инебольше, чем 55 атомных %. Когдав материалвведен Ga, атомноекомпозиционноеотношение, выражаемоев виде Ga/(In+Zn+Ga), составляет 30 атомных % илименьше. Данныйтранзисторимеетулучшенную S-величинуи дрейфовуюподвижность. 3 н. и 6 з.п. ф-лы, 25 ил.