Abstract:
A semiconductor device comprises a contact hole for connecting electroconductive films having a stepped profile with the top having a size greater than the bottom, the top size of the contact hole being defined in a self-aligning manner by another film disposed between said electroconductive films.
Abstract:
A display panel is characterized by a pixel unit array comprising pixel units having a combination of two of, first, second and third three color pixels disposed in a first direction and a combination of two color pixels differing from the combination of the two color pixels disposed in a second direction differing from the first direction, so as to share a color pixel, the pixel units being two-dimensionally arranged at a predetermined pitch on a substrate, and a microlens array comprising a plurality of microlenses in which the pitch of the two color pixels in the first direction and the second direction is one pitch, the plurality of microlenses being two-dimensionally arranged on the pixel unit array on the substrate.
Abstract:
A display panel is characterized by a pixel unit array comprising pixel units having a combination of two of, first, second and third three color pixels disposed in a first direction and a combination of two color pixels differing from the combination of the two color pixels disposed in a second direction differing from the first direction, so as to share a color pixel, the pixel units being two-dimensionally arranged at a predetermined pitch on a substrate, and a microlens array comprising a plurality of microlenses in which the pitch of the two color pixels in the first direction and the second direction is one pitch, the plurality of microlenses being two-dimensionally arranged on the pixel unit array on the substrate.
Abstract:
A liquid crystal apparatus comprises an active matrix substrate including a plurality of scanning lines and a plurality of signal lines, transistors arranged respectively at the crossings of the scanning lines and the signal lines and having the source region connected to the corresponding signal line and the gate region connected to the corresponding scanning line and pixel electrodes connected respectively to the drain regions of the transistors, an opposite substrate disposed oppositely relative to the active matrix substrate and a liquid crystal material filled in the space between the active matrix substrate and the opposite substrate. A source region is shared by each pair of adjacently located transistors and connected to the corresponding signal line.
Abstract:
A liquid crystal apparatus comprises an active matrix substrate including a plurality of scanning lines and a plurality of signal lines, transistors arranged respectively at the crossings of the scanning lines and the signal lines and having the source region connected to the corresponding signal line and the gate region connected to the corresponding scanning line and pixel electrodes connected respectively to the drain regions of the transistors, an opposite substrate disposed oppositely relative to the active matrix substrate and a liquid crystal material filled in the space between the active matrix substrate and the opposite substrate. A source region is shared by each pair of adjacently located transistors and connected to the corresponding signal line.
Abstract:
A matrix substrate (1) comprises a pixel region (250) formed by arranging a plurality of pixel electrodes (12) to a matrix, drive circuit regions (260) for feeding said pixel electrodes (12) with electric signals and sealing regions (270). The gaps separating the pixel electrodes (12) are filled with insulation members of an insulating material (9) to provide a continuous surface connecting those of the pixel electrodes (12) and members (12') of the material of the pixel electrodes and those of the material (9) of the insulation members are arranged at least either in the drive circuit regions (26) or in the sealing regions (270) to provide a continuous surface there.
Abstract:
An optical recording/reproducing apparatus includes an irradiation optical system for irradiating a light beam from a light source onto a predetermined track of an optical recording medium having a plurality of neighboring tracks as a fine light spot so as to perform recording/reproduction of information or reproduction of information, and a detection optical system for detecting a returned light beam from the optical recording medium. A mask is arranged in a far field region sufficiently separated from a focal plane of the detection optical system, for masking marginal rays, in a direction perpendicular to the track, of the returned light beam, so that information reproduced from a track adjacent to the predetermined track upon reproduction of information on the predetermined track is reduced.
Abstract:
An optical recording/reproducing apparatus includes an irradiation optical system for irradiating a light beam from a light source onto a predetermined track of an optical recording medium having a plurality of neighboring tracks as a fine light spot so as to perform recording/reproduction of information or reproduction of information, and a detection optical system for detecting a returned light beam from the optical recording medium. A mask is arranged in a far field region sufficiently separated from a focal plane of the detection optical system, for masking marginal rays, in a direction perpendicular to the track, of the returned light beam, so that information reproduced from a track adjacent to the predetermined track upon reproduction of information on the predetermined track is reduced.
Abstract:
A matrix substrate includes a plurality of conductive members constituting pixels provided on a substrate, the plurality of conductive members forming substantially a smooth plane, wherein the matrix substrate further comprises a nonconductive section for insulating the plurality of conductive members from each other, the distance between two adjacent conductive members being lower at the surfaces of the conductive members than at the side of the substrate.