Abstract:
An intravascular device for the formation of linear lesions which has particular utility in the treatment of atrial fibrillation and flutter. The intravascular device has an outer delivery sheath (11) with a distal section (25) which has an elongated opening (28) and a support member (26) coextending with the opening (28). An EP device (12) having a plurality of electrodes (32) on its distal portion (31) is slidably disposed within the inner lumen (13) of the delivery sheath (11) but it is secured by its distal end within the distal extremity of the delivery sheath (11) at least while in operation. In this manner an axial force in the distal direction on the proximal extremity of the EP device (12), which extends out of the patient during the procedure, will cause the distal portion of the EP device (12) to arch outwardly out of and away from the distal section (25) of the delivery sheath (11) and engage the surface of the patient's heart chamber. High frequency, e.g. RF, electrical energy delivered to the electrodes (32) on the distal shaft section (31) of the EP device (12) will form a linear lesion which terminates the fibrillation or flutter.
Abstract:
A method and system for lysing a patient's heart tissue causing or involved with arrhythmia which includes an intravascular catheter with a relatively inelastic occlusion balloon on the distal end of the catheter which is inflated to block an artery or vein of the patient's heart so than when lysing fluid such as an ethanol solution is discharged from the distal port in the catheter the inflated balloon prevents the proximal refluxing of lysing medium into undesirable areas of the patient's heart. The inelastic balloon is configured to be inflated to a diameter of about 0.7 to about 1.3, preferably about 0.8 to about 1.2, times the diameter of the blood vessel in which the balloon is to be inflated so as to effectively occlude the passageway without damaging the wall of the blood vessel. The working length of the balloon is less than about 1.5 cm, preferably less than 0.75 cm.
Abstract:
A guiding catheter for delivery of intravascular devices to a patient's coronary sinus. The guiding catheter has a relatively stiff proximal section and a relatively flexible distal section, the latter being about 1 to about 6 inches in length and being configured to subselect a branch cardiac vein leading to the coronary sinus. The guiding catheter is particularly suitable for delivering an intravascular device for sensing electrical activity into a cardiac vein to detect such activity from within the blood vessel.
Abstract:
The invention is directed to an intravascular device for occluding a patient's blood vessel by coagulating blood in a desired location within the blood vessel to form occluding thrombus therein by means of RF electrical energy which preferably has a frequency of about 0.3 to about 1.5 megahertz. The intravascular device is particularly useful in terminating arrhythmia in a patient's heart by occluding a coronary artery to terminate the flow of oxygenated blood to a region of the patient's heart where aberrant signals causing the arrhythmia either originate or through which they are conducted. The device may also be used to occlude other blood vessels such as in the treatment of intracranial berry aneurysms.
Abstract:
A system for detecting electrical activity within a patient's heart comprising an elongated intravascular device (10), such as a catheter or guidewire, having at least one bipolar electrode pair (17, 18) on a distal section (12) of the elongated device to intravascularly detect electrical activity within the patient's heart. The catheter or guidewire preferably has a tubular shaft (14) formed of braided strands which include a plurality of insulated conductors (15) which are electrically connected to the bipolar electrodes (17, 18).
Abstract:
An over-the-wire electrophysiology catheter which has an emitting electrode on the distal tip electrically connected to a source of high frequency electrical energy. The intravascular device is configured to be advanced through a patient's cardiac veins or coronary arteries and preferably is also provided with sensing electrodes for detecting electrical activity of the patient's heart from within a blood vessel of the heart. The device forms large lesions in tissue adjacent to the blood vessel in which the device is located without significantly damaging the blood vessel to effectively terminate signals causing arrhythmia.
Abstract:
A system for detecting electrical activity within a patient's heart comprising an elongated intravascular device (10), such as a catheter or guidewire, having a plurality of sensing electrodes (16) on a distal section of the elongated device to detect electrical activity from within a blood vessel of the patient's heart. The intravascular device has a first compact array (17) with a relatively small interelectrode spacing, such as less than 2 mm, and may have a second electrode array (20) with an interelectrode spacing much greater than the interelectrode spacing in the first array. The second electrode array may be used to detect the general region of the arrhythmogenic tissue and the first electrode array is used to provide a high resolution of the electrical detection to more accurately pinpoint the location of the arrhythmogenic site. When the general region of the arrhythmogenic focus is known, an intravascular device having a single array of electrodes with an interelectrode spacing of less than 2 mm may be used.
Abstract:
An electrophysiology catheter assembly having a deflection mechanism rotatably disposed within an inner lumen of the catheter so that deflection of the deflection mechanism within the inner lumen results in a deflection of the distal portion of the catheter. Rotation of the deflection mechanism within the inner lumen of the catheter allows universal deflection of the distal portion of the catheter about its longitudinal axis. The deflection mechanism may be first rotated and then deflected or it may be first deflected and then rotated in a deflected condition. The catheter shaft does not need to be rotated to change the shape of its distal portion.
Abstract:
A method and system for treating a patient's heart exhibiting arrhythmia by first detecting electrical activity within the patient's heart to determine the location of the arrhythmogenic site or conductive pathway causing the arrhythmia and then creating an infarct within the region of the patient's heart where the arrhythmogenic site or the conductive pathway causing the arrhythmia is located by delivering an occluding element to a coronary artery which delivers oxygenated blood to said region of the patient's heart. In one presently preferred embodiment the occluding element is a flaccid or limp coil which when disposed in a coronary arterial passageway forms a randomly shaped, intertwined mass which quickly forms thrombus within the coronary artery to block the passage of oxygenated blood therethrough. The flaccid coil may be delivered through an inner lumen of a catheter which has a distal portion extending within the coronary artery.
Abstract:
A method and system for detecting electrical activity within a patient's heart, particularly the electrical activity which causes arrhythmia, which includes a first intravascular device (40) such as a catheter or guidewire having a plurality of sensing electrodes (15) on a distal portion (14) thereof which is disposed within one location of the patient's coronary vasculature and a second intravascular device (11) such as a catheter or guidewire having a plurality of sensing electrodes (17) on a distal portion (16) thereof which is disposed within a second location of the patient's coronary vasculature to facilitate mapping the electrical activity of the patient's heart. Once the electrical activity has been mapped, therapeutic procedures can be initiated.