Abstract:
An electronic apparatus includes: a display; a light sensor located on an opposite side of a display surface of the display, and detects intensity of ambient light; and a control unit, in a first state in which luminous intensity of the display is not less than a first threshold, in the case where the intensity of ambient light detected by the light sensor is less than predetermined intensity of light, outputs, to the display, a signal to reduce the luminous intensity of the display to a second state that is not more than a second threshold that is less than the first threshold, and in the second state, outputs a signal to detect the intensity of ambient light to the light sensor.
Abstract:
An information processing apparatus includes a first processor, a second processor and a positioning processor. The second processor consumes a reduced amount of power compared to the first processor during an operation. The positioning processor receives radio waves from positioning satellites and converts the radio waves into positioning data. The second processor controls the positioning processor. The second processor stores the positioning data received from the positioning processor. The second processor transfers the stored positioning data to the first processor at a timing determined in accordance with an operating condition of the first processor.
Abstract:
An information processing apparatus includes: a communication unit that performs wireless communication with an external apparatus; a first control unit that switches between a normal state and a low electric power consumption state that suppresses electric power consumption to less than the normal state; and a second control unit that operates at lower electric power consumption than the first control unit, in which the information processing apparatus controls a connection state of the communication unit with the first control unit and the second control unit, based on a state of the information processing apparatus.
Abstract:
A display device includes a display, a touch panel and a controller. The display includes a plurality of display panels laminated on one another. The touch panel is provided on a screen of the display and accepts touch operation. The controller determines with respect to which display panel among the plurality of display panels the touch operation is carried out, and carries out a process corresponding to operation content of the touch operation on the determined display panel.
Abstract:
A wearable information device is configured to store device identifying information used for identifying the information device registered in advance, to confirm whether or not a taken image, in which an object in a direction of line of vision of a user is taken, shows the information, by image analysis based on the stored device identifying information, and to notify the information device of a result of the confirmation. The information device is configured to execute a predetermined function on the basis of the result of the confirmation of the information device notified from the wearable information device.
Abstract:
A power supply apparatus includes a first constant-power power supply that switches and supplies powers of j types (where j is a natural number of two or more), a second constant-power power supply that switches and supplies powers of k types (where k is a natural number of two or more), and a switching controller that selects and switches on the first and second variable-power power supplies, excluding power transition periods thereof, to supply a load with a constant power.
Abstract:
A detection device including a main body case where at least part of a main surface has an opening, a board which is provided in the main body case, a first detection portion which is provided under the board in the main body case and detects biological information of a user, a window portion which is provided under the first detection portion and is in the opening of the main body case, and a second detection portion which is provided between the board and the window portion and detects, through the window portion, whether or not the detection device is in contact with or close to the skin of the user.
Abstract:
An electronic device includes first and second processors, and first and second display units. While the first and second processors cooperate with each other and perform a display operation including a time display, the first processor can be set to a normal mode, a low power mode in which a power consumption is lower than a power consumption in the normal mode, or a pause mode in which a power consumption is lower than the power consumption in the low power mode, and the first processor is stopped. In the normal or low power modes, the first processor controls such that the first display unit displays a time, and the second processor controls such that the second display unit does not display a time. In the pause mode, the first display unit is turned off, and the second processor controls such that the second display unit displays a time.
Abstract:
An electronic apparatus provided with a touch screen, the electronic apparatus comprising: a first sensor that detects approach of a finger to the touch screen; and a controller that switches, in an inactive state of the touch screen, in a case where the first sensor detects the approach of the finger to the touch screen, an operating state of the touch screen from the inactive state to an active state.
Abstract:
An electronic device includes first and second processors, and first and second display units. While the first and second processors cooperate with each other and perform a display operation including a time display, the first processor can be set to a normal mode, a low power mode in which a power consumption is lower than a power consumption in the normal mode, or a pause mode in which a power consumption is lower than the power consumption in the low power mode, and the first processor is stopped. In the normal or low power modes, the first processor controls such that the first display unit displays a time, and the second processor controls such that the second display unit does not display a time. In the pause mode, the first display unit is turned off, and the second processor controls such that the second display unit displays a time.