Abstract:
An improved mechanical joint structure (10, 10') is provided and adapted for positively retaining a heating element within a bore of a body of a glow plug. The glow plug (14, 14') includes a body (18, 18'), a heating element (22) and a ferrule (26, 26'). The ferrule (26, 26') is sealingly positioned radially between an internal surface (42) of the body bore (34) and a peripheral surface (58) of the heating element (22). The glow plug (14, 14') further includes a compressing structure (30) for positively compressing an internal surface (74) of the ferrule (26, 26') against the peripheral surface (58) of the heating element (22) in response to the heating element (22) being forced into the body bore (34) by, for example, the gas pressure developed in an operating engine combustion chamber. Unlike conventional brazed or interference joints used in typical glow plugs, the present invention provides a normal force (Fn), for sealing the heating element, and an axially-directed frictional force (Ff), for retaining the heating element, which both increase as the heating element is forced deeper into the body bore (34).
Abstract:
The service life of conventional glow plugs is extremely short when they are continuously energized at an elevated temperature during engine operation in order to assist ignition of non-autoignitable fuels. Such glow plugs typically fail due to thermal stresses and/or oxidation and corrosion. Herein is disclosed an improved heating element assembly (10, 10', 10'') adapted for incorporation in a glow plug. The heating element assembly (10, 10', 10'') includes a monolithic sheath (24) having a relatively-thin and generally annular wall (30) defining a blind bore (34). The heating element assembly (10) further includes a heating device (26, 26', 26'') positioned in the blind bore (34) and adapted to emit heat, and a heat transfer device (28) adapted to transfer heat from the heating means (26) to the sheath (24). The heating device includes a heating filament (42, 42') and a ceramic insulator (40, 40', 40''). The heating filament (42, 42') is protected against oxidation by being encapsulated in the insulator (40, 40', 40''). The insulator is protected against corrosion by being encapsulated in the sheath (24). The sheath (24) is formed of a preselected material which is chosen and configured so as to minimize failure of the heating element assembly (10, 10', 10'') caused by thermal stresses, oxidation and/or corrosion.
Abstract:
A piezoelectric solid state motor stack (200) having a plurality of piezoelectric disks (210, 208, 206, 202) interleaved with a plurality of electrodes (204), with at least one first piezoelectric disk (210) of a first thickness sandwiched between at least two second piezoelectric disks (208) of a second thickness, the second thickness being different from the first thickness. The structure includes at least two electrodes (204), each electrode being interleaved with at least two of the plurality of disks, such that each electrode is in contact with a surface of at least one of the plurality of disks. The electrodes are connected to and biased by a source of electrical potential to produce an axial displacement between opposite end surfaces of the stack. The stack may include four different disk thicknesses, with the thickest disks (202) sandwiching decreasingly thinner disks (206, 208, 210) and further electrodes. The order and thickness of the disks may be symmetric about a center axis perpendicular to the longitudinal axis of the stack.
Abstract:
A method for making piezoelectric solid state motor stack disks. The method includes the steps of preparing a piezoelectric ceramic powder (102); preparing a substantially cylindrical piezoelectric ceramic slug from the powder (104); and cutting the slug with an ID saw into disks of a predetermined thickness (106). The method further includes pressing (304) the powder in a press at a pressure of between about 1500 psi and 6000 psi and firing (308) the slug at a temperature of between about 1250 °C and 1350 °C for a period of between about 15 min. and 4 hours. The method also comprises the steps of cleaning (406) the ceramic disks after slicing; and applying a conductive layer (412) to a portion of facets of the disks prior to the assembly step (506).
Abstract:
The service life of conventional glow plugs is extremely short when they are continuously energized at an elevated temperature during engine operation in order to assist ignition of non-autoignitable fuels. Such glow plugs typically fail due to thermal stresses and/or oxidation and corrosion. Herein is disclosed an improved heating element assembly (10, 10', 10'') adapted for incorporation in a glow plug (12). The heating element assembly (10, 10', 10'') includes a monolithic sheath (24) having a relatively-thin and generally annular wall (30) defining a blind bore (34). The heating element assembly (10, 10', 10'') further includes a heating device (26, 26', 26'') positioned in the blind bore (34) and adapted to emit heat, and a heat transfer device (28) adapted to transfer heat from the heating means (26, 26', 26'') to the sheath (24). The heating device (26, 26', 26'') is protected by the sheath (24) formed of a preselected material which is chosen and configured so as to minimize failure of the heating element assembly (10, 10', 10'') caused by thermal stresses, oxidation and/or corrosion.
Abstract:
L'invention concerne une structure de joint mécanique amélioré (10, 10') adapté pour retenir directement un élément chauffant à l'intérieur d'un alésage d'un corps d'une bougie de préchauffage. Ladite bougie de préchauffage (14, 14') comprend un corps (18, 18'), un élément chauffant (22) ainsi qu'une virole (26, 26'). Ladite virole (26, 26') est positionnée de manière étanche radialement entre une surface intérieure (42) de l'alésage du corps (34), et une surface périphérique (58) dudit élément chauffant (22). Ladite bougie de préchauffage (14, 14') comprend en outre une structure de compression (30) destinée à comprimer directement une surface intérieure (74) de ladite virole (26, 26') contre la surface périphérique (58) dudit élément chauffant (22) lorsque ce dernier (22) est forcé à pénétrer dans l'alésage du corps (34) par, par exemple, la pression du gaz développée dans la chambre de combustion d'un moteur en fonctionnement. A la différence des joints brasés ou d'interférence classiques utilisés dans des bougies de préchauffage habituelle, l'invention prévoit une force normale (Fn) afin de sceller ledit élément chauffant, ainsi qu'une force de frottement (Ff) orientée axialement et destinée à retenir ledit élément chauffant, lesquelles augmentent l'une et l'autre à mesure que ledit élément chauffant est introduit plus profondément dans l'alésage du corps (34).
Abstract:
The service life of conventional glow plugs is extremely short when they are continuously energized at an elevated temperature during engine operation in order to assist ignition of non-autoignitable fuels. Such glow plugs typically fail due to thermal stresses and/or oxidation and corrosion. Herein is disclosed an improved heating element assembly (10, 10', 10'') adapted for incorporation in a glow plug. The heating element assembly (10, 10', 10'') includes a monolithic sheath (24) having a relatively-thin and generally annular wall (30) defining a blind bore (34). The heating element assembly (10) further includes a heating device (26, 26', 26'') positioned in the blind bore (34) and adapted to emit heat, and a heat transfer device (28) adapted to transfer heat from the heating means (26) to the sheath (24). The heating device includes a heating filament (42, 42') and a ceramic insulator (40, 40', 40''). The heating filament (42, 42') is protected against oxidation by being encapsulated in the insulator (40, 40', 40''). The insulator is protected against corrosion by being encapsulated in the sheath (24). The sheath (24) is formed of a preselected material which is chosen and configured so as to minimize failure of the heating element assembly (10, 10', 10'') caused by thermal stresses, oxidation and/or corrosion.
Abstract:
Bloc de moteur monolithe piézoélectrique (200) comprenant une pluralité de disques piézoélectriques (210, 208, 206, 202) intercalés avec une pluralité d'électrodes (204), dans lequel au moins un premier disque piézoélectrique (210) ayant une première épaisseur est disposé entre au moins deux seconds disques piézoélectriques (208) ayant une deuxième épaisseur qui diffère de la première épaisseur. Ladite structure comprend au moins deux électrodes (204) qui sont chacune intercalées avec au moins deux des disques de sorte que chaque électrode se trouve en contact avec une surface d'au moins un des disques. Les électrodes sont connectées à une source de potentiel électrique et polarisées par cette dernière pour produire un déplacement axial entre les surfaces d'extrémités opposées du bloc. En outre, le bloc peut comporter quatre épaisseurs de disques différentes, dans ce cas les disques les plus épais (202) prennent en sandwich par ordre décroissant les disques les plus minces (206, 208, 210) et les autres électrodes. La disposition et l'épaisseur des disques peuvent être symétriques par rapport à un axe central perpendiculaire à l'axe longitudinal du bloc.
Abstract:
A piezoelectric solid state motor stack (200) having a plurality of piezoelectric disks (210, 208, 206, 202) interleaved with a plurality of electrodes (204), with at least one first piezoelectric disk (210) of a first thickness sandwiched between at least two second piezoelectric disks (208) of a second thickness, the second thickness being different from the first thickness. The structure includes at least two electrodes (204), each electrode being interleaved with at least two of the plurality of disks, such that each electrode is in contact with a surface of at least one of the plurality of disks. The electrodes are connected to and biased by a source of electrical potential to produce an axial displacement between opposite end surfaces of the stack. The stack may include four different disk thicknesses, with the thickest disks (202) sandwiching decreasingly thinner disks (206, 208, 210) and further electrodes. The order and thickness of the disks may be symmetric about a center axis perpendicular to the longitudinal axis of the stack.
Abstract:
La durabilité de bougies de réchauffage classiques est extrêmement courte lorsqu'elles sont continuellement excitées à une température élevée au cours du fonctionnement du moteur afin d'aider à l'allumage des carburants non auto-allumants. De telles bougies de réchauffage défaillent typiquement en raison de contraintes thermiques et/ou de l'oxydation et la corrosion. On décrit ici un ensemble élément de chauffage amélioré (10, 10', 10'') conçu pour être incorporé dans une bougie de réchauffage. L'ensemble élément de chauffage (10, 10', 10'') comprend une gaine monolithe (24) pourvue d'une paroi relativement mince et généralement annulaire qui définit une cavité borgne (34). L'ensemble élément de chauffage (10) comprend en outre un dispositif chauffant (26, 26', 26'') situé dans la cavité borgne (34) et conçu pour émettre de la chaleur, et un dispositif de transfert de chaleur (28) conçu pour transférer la chaleur de l'élément de chauffage (26) à la gaine (24). Le dispositif chauffant comprend un filament chauffant (42, 42') et un isolateur céramique (40, 40', 40''). Le filament chauffant est protégé contre la corrosion en étant enveloppé par l'isolateur (40, 40', 40''). L'isolateur est protégé contre la corrosion en étant enveloppé par la gaine (24). Celle-ci (24) est fabriquée à partir d'un matériau présélectionné qui est choisi et formé de manière à réduire la possibilité de défaillance de l'ensemble élément chauffant (10, 10', 10'') due à des contraintes thermiques, l'oxydation et/ou la corrosion.