Abstract:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a post-treatment step is performed on the newly formed nanotube structures. The post-treatment removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The post-treatment is performed with the plasma at the same substrate temperature. For the post-treatment, the hydrogen containing gas is used as a plasma source gas. During the transition from the nanotube growth stop to the post treatment step, the pressure in the plasma process chamber is stabilized with the aforementioned purifying gas without shutting off the plasma in the chamber. This eliminates the need to purge and evacuate the plasma process chamber.
Abstract:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a purification step is performed on the newly formed nanotube structures. The purification removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The purification is performed with the plasma at the same substrate temperature. For the purification, the hydrogen containing gas added as an additive to the source gas for the plasma chemical deposition is used as the plasma source gas. Because the source gas for the purification plasma is added as an additive to the source gas for the chemical plasma deposition, the grown carbon nanotubes are purified by reacting with the continuous plasma which is sustained in the plasma process chamber. This eliminates the need to purge and evacuate the plasma process chamber as well as to stabilize the pressure with the purification plasma source gas. Accordingly, the growth and the purification may be performed without shutting off the plasma in the plasma process chamber.
Abstract:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a purification step Is performed on the newly formed nanotube structures. The purification removes graphite -and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The purification is performed with the plasma 'at the same substrate temperature. For the purification, the hydrogen containing gas added as an additive to the source gas for the plasma chemical deposition Is used as the plasma source gas. Because the source gas for the purification plasma Is added as an additive to the source gas for the chemical plasma deposition, the grown carbon nanotubes are purified by reacting with the continuous plasma which Is sustained In the plasma process chamber. This eliminates the need to purge and evacuate the plasma process chamber as well as to stabilize the pressure with the purification plasma source gas. Accordingly, the growth and the purification may be performed without shutting off the plasma in the plasma process chamber.
Abstract:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a post-treatment step is performed on the newly formed nanotube structures. The post-treatment removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The post-treatment is performed with the plasma at the same substrate temperature. For the post-treatment, the hydrogen containing gas is used as a plasma source gas. During the transition from the nanotube growth stop to the post treatment step, the pressure in the plasma process chamber is stabilized with the aforementioned purifying gas without shutting off the plasma in the chamber. This eliminates the need to purge and evacuate the plasma process chamber.
Abstract:
A flat panel display and a method for forming a carbon nanotube based flat panel display. In one embodiment, the flat panel display includes a barrier layer formed between a catalyst layer upon which microstructures of carbon nanotubes are formed and a resistor layer. The barrier layer acts as an anti diffusion layer between the catalysts layer and the resistor layer to prevent the catalyst layer from diffusing into the resistor layer during the growing of the carbon nanotubes. The barrier layer also enhances the adhesion characteristics of the catalyst layers to enable the uniform growth of the carbon nanotube structures on the catalyst layer.
Abstract:
An electron-emitting device contains a vertical emitter electrode patterned into multiple laterally separated sections situated between the electron-emissive elements, on one hand, and a substrate, on the other hand. The electron-emissive elements comprising carbon nanotubes are grown at a temperature range of 200 °C to 600 °C compatible with the thermal stress of the underlying substrate. The electron-emissive elements are grown on a granulized catalyst layer that provides a large surface area for growing the electron-emissive elements at such low temperature ranges.
Abstract:
An electron-emitting device, for example as used in a field emissive display device, includes a barrier layer between an emitter electrode structure and a catalyst layer, upon which microstructures of carbon nanotubes are formed. The barrier layer may act as an anti diffusion layer between the catalyst layer and, for example, a resistive layer of the emitter electrode structure. In this way, the catalyst layer may be prevented from diffusing into the resistive layer during the growing of the carbon nanotubes or other electron-emissive elements. The barrier layer may also enhance the adhesion characteristics of the catalyst layer to improve the uniformity of growth of the electron-emissive elements with the catalyst layer.
Abstract:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a post-treatment step is performed on the newly formed nanotube structures. The post-treatment removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The post-treatment is performed with the plasma at the same substrate temperature. For the post-treatment, the hydrogen containing gas is used as a plasma source gas. During the transition from the nanotube growth step to the post-treatment step, the pressure in the plasma process chamber is stabilized with the aforementioned purifying gas without shutting off the plasma in the chamber. This eliminates the need to purge and evacuate the plasma process chamber.
Abstract:
An electron-emitting device, for example as used in a field emissive display device, includes a barrier layer between an emitter electrode structure and a catalyst layer, upon which microstructures of carbon nanotubes are formed. The barrier layer may act as an anti diffusion layer between the catalyst layer and, for example, a resistive layer of the emitter electrode structure. In this way, the catalyst layer may be prevented from diffusing into the resistive layer during the growing of the carbon nanotubes or other electron-emissive elements. The barrier layer may also enhance the adhesion characteristics of the catalyst layer to improve the uniformity of growth of the electron-emissive elements with the catalyst layer.
Abstract:
An electron-emitting device contains a vertical emitter electrode patterned into multiple laterally separated sections situated between the electron-emissive elements, on one hand, and a substrate, on the other hand. The electron-emissive elements comprising carbon nanotubes are grown at a temperature range of 200° C. to 600° C. compatible with the thermal stress of the underlying substrate. The electron-emissive elements are grown on a granulized catalyst layer that provides a large surface area for growing the electron-emissive elements at such low temperature ranges.