Abstract:
The present disclosure relates to a formaldehyde-based adhesive comprising Nanocrystalline Cellulose (NCC), a process for preparing same and uses thereof.
Abstract:
The disclosure relates to polyurethane (PU) composites comprising nanocrystalline cellulose (NCC) and methods for improving tensile strength and elongation. The process to prepare the polyurethane comprises providing a dispersion of NCC in (a)one or more polyols, (b) one or more isocyanates, or (c) one or more polyols and one or more isocyanate, separately or mixed together, mixing with a catalyst and isolating the polyurethane. Preferred embodiments include an NCC content of less than 5%, dried NCC starting material, and the NCC being fully dispersed and not aggregated. The polyurethane may be used in elastomeric fibres, paints, solid polyurethane plastics, thermoplastic and cast elastomers and adhesives and/or binders.
Abstract:
The present disclosure relates to use of polydopamine (PD) coated cellulose nanocrystals (CNCs) as template for further conjugation of functional oligomers (amines, carboxylic acids etc.) and the immobilization of various types of CNC hybrid nanomaterial nanoparticles to improve their stability in aqueous solution, e.g. the preparation of silver nanoparticle on CNC. Surface functionalization of CNC with polydopamine can be performed by mixing dopamine and CNCs for certain time at designed temperature. The resultant PD-CNCs can be used to stabilize metallic and inorganic nanoparticles, which could be generated in-situ, and further immobilized on the surface of PD coated CNCs. Benefiting from the improved stability, the resultant nanoparticles immobilized PD-CNC system also generally possess higher catalytic activity than the nanoparticles alone.
Abstract:
The disclosure provides a nanodispersion of cellulose nanocrystals (CNCs) in monoethylene glycol (MEG) as well as a method for dispersing CNCs in MEG and a process for preparing a polymer composites comprising a CNC nanodispersion in MEG comprising copolymerizing said nanodispersion of CNCs and at least one monomer polymerizable with said MEG and/or CNCs.
Abstract:
The present disclosure provides a core-shell nanocomposite material comprising an intrinsically conductive polymer (ICP) and surface-modified cellulose nanocrystals (CNCs) as well as synthesis for preparing same and its use thereof in various applications.
Abstract:
The present disclosure provides a core-shell nanocomposite material comprising an intrinsically conductive polymer (ICP) polymerized on the surface of oxidized cellulose nanocrystals (CNCs) as well as synthesis for preparing same and its use thereof in various applications.
Abstract:
The disclosure provides a nanodispersion of cellulose nanocrystals (CNCs) in monoethylene glycol (MEG) as well as a method for dispersing CNCs in MEG and a process for preparing a polymer composites comprising a CNC nanodispersion in MEG comprising copolymerizing said nanodispersion of CNCs and at least one monomer polymerizable with said MEG and/or CNCs.
Abstract:
The disclosure relates to polyurethane (PU) composites comprising nanocrystalline cellulose (NCC) and methods for improving tensile strength and elongation. The process to prepare the polyurethane comprises providing a dispersion of NCC in (a)one or more polyols, (b) one or more isocyanates, or (c) one or more polyols and one or more isocyanate, separately or mixed together, mixing with a catalyst and isolating the polyurethane. Preferred embodiments include an NCC content of less than 5%, dried NCC starting material, and the NCC being fully dispersed and not aggregated. The polyurethane may be used in elastomeric fibres, paints, solid polyurethane plastics, thermoplastic and cast elastomers and adhesives and/or binders.
Abstract:
The present disclosure relates to a formaldehyde-based adhesive comprising Nanocrystalline Cellulose (NCC), a process for preparing same and uses thereof.
Abstract:
A process for preparing polyurethane composites includes (i) providing a dispersion of nanocrystalline cellulose in (a) one or more polyols, (b) one or more isocyanates, or (c) one or more polyols and one or more isocyanate, mixed together; wherein the amount of water in the nanocrystalline cellulose is less than about 1% w/w; (ii) mixing the dispersion of (i)(a) with an isocyanate or (i)(b) with a polyol and a catalyst to allow polymerization; or mixing the dispersion of (i)(c) and a catalyst to allow polymerization; and (iii) isolating the polyurethane composite. A method for improving properties of polyurethanes includes dispersing nanocrystalline cellulose into one or both parts of a two part polyol/isocyanate precursors prior to allowing polymerization of the precursors, wherein the amount of water in the nanocrystalline cellulose is less than about 1% w/w; mixing the dispersion with a catalyst; and polymerizing the precursors to provide the polyurethane.