Abstract:
This invention describes development of a novel flexible film comprising nanocrystalline cellulose (NCC), or cellulose nanocrystals (CNC), and a controlled amount of a suitable zwitterionic (amphoteric) surfactant. The films are iridescent and have a high level of structural integrity, where mechanical properties can be engineered to suit the end applications. Flexible NCC films can be used in a multitude of applications, for instance, electrostatic shielding, gas barrier, hard coatings, printing.
Abstract:
This invention describes development of a novel flexible film comprising nanocrystalline cellulose (NCC), or cellulose nanocrystals (CNC), and a controlled amount of a suitable zwitterionic (amphoteric) surfactant. The films are iridescent and have a high level of structural integrity, where mechanical properties can be engineered to suit the end applications. Flexible NCC films can be used in a multitude of applications, for instance, electrostatic shielding, gas barrier, hard coatings, printing.
Abstract:
The disclosure relates to a novel process for functionalizing NCC, a method for producing amine-cured epoxy-based nanocomposites through the use of said functionalized NCC, and nanocomposites thereof. The process for functionalizating NCC comprises providing a mixture of NCC and one or more monomers. The mixture is suitable for free radical polymerization and the monomer is cross-linkable with epoxy and is aqueous soluble. The polymerization takes place in the presence of a free radical initiator and oxygen is purged from the mixture and the initiator solution. The epoxy-based nanocomposite is produced by mixing the funtionalized NCC with an amine-curable epoxy resin and a hardener, in a solvent, and allowing the mixture to cure.
Abstract:
The disclosure relates to a novel process for functionalizing NCC, a method for producing amine-cured epoxy-based nanocomposites through the use of said functionalized NCC, and nanocomposites thereof. The process for functionalizating NCC comprises providing a mixture of NCC and one or more monomers. The mixture is suitable for free radical polymerization and the monomer is cross-linkable with epoxy and is aqueous soluble. The polymerization takes place in the presence of a free radical initiator and oxygen is purged from the mixture and the initiator solution. The epoxy-based nanocomposite is produced by mixing the funtionalized NCC with an amine-curable epoxy resin and a hardener, in a solvent, and allowing the mixture to cure.
Abstract:
Composite hydrogels with a chiral organization with tunable responsive photonic properties are conceived. A polymerizable hydrophilic monomer such as acrylamide is reacted in the presence of nanocrystalline cellulose (NCC) to give a composite hydrogel with cellulose nanocrystals embedded in a chiral nematic organization. Through control of the reaction conditions, the hydrogel can exhibit photonic colour that can be varied throughout the visible and near-infrared regions. The colour shifts substantially and reversibly upon swelling and shrinking of the hydrogel through solvation in aqueous and nonaqueous media. The responsive properties can be tailored both through choice of monomer and/or through chemical modification of the NCC surface. Examples of possible applications of the materials are: tunable reflective filters, chemical sensors, stationary phases for electrophoresis of chiral or achiral substances, and as a template to generate new materials with chiral nematic structures.
Abstract:
The disclosure relates to a novel process for functionalizing NCC, a method for producing amine-cured epoxy-based nanocomposites through the use of said functionalized NCC, and nanocomposites thereof. The process for functionalizating NCC comprises providing a mixture of NCC and one or more monomers. The mixture is suitable for free radical polymerization and the monomer is cross-linkable with epoxy and is aqueous soluble. The polymerization takes place in the presence of a free radical initiator and oxygen is purged from the mixture and the initiator solution. The epoxy-based nanocomposite is produced by mixing the funtionalized NCC with an amine-curable epoxy resin and a hardener, in a solvent, and allowing the mixture to cure.