Abstract:
A crystalline polyamide ester resin is prepared by copolymerizing (A) a dicarboxylic acid component, (B) a diamine component, and (C) a cyclic aliphatic diol component, and has a structure in which a dicarboxylic acid moiety derived from the dicarboxylic acid component (A), a diamine moiety derived from the diamine component (B) and a cyclic aliphatic diol moiety derived from the cyclic aliphatic diol component (C) are repeated. A molar ratio ((B):(C)) of the diamine component (B) to the cyclic aliphatic diol component (C) is about 80 to about 99:about 1 to about 20. The crystalline polyamide ester resin has a melting point (Tm) ranging from about 280° C. to about 320° C. and a crystallization temperature (Tc) ranging from about 260° C. to about 290° C. The crystalline polyamide ester resin can have excellent heat resistance, discoloration resistance and moldability.
Abstract:
The polyamide resin of the present invention is a polyamide resin containing an amine group and a carboxyl group, wherein the amine group concentration is about 200 to 300 μeq/g and two to six times as high as the carboxyl group concentration. The polyamide resin has excellent long-thermal stability.
Abstract:
A crystalline polyamide ester resin is prepared by copolymerizing (A) a dicarboxylic acid component, (B) a diamine component, and (C) a cyclic aliphatic diol component, and has a structure in which a dicarboxylic acid moiety derived from the dicarboxylic acid component (A), a diamine moiety derived from the diamine component (B) and a cyclic aliphatic diol moiety derived from the cyclic aliphatic diol component (C) are repeated. A molar ratio ((B):(C)) of the diamine component (B) to the cyclic aliphatic diol component (C) is 80 to 99: 1 to 20. The crystalline polyamide ester resin has a melting point (Tm) ranging from 280°C to 320°C and a crystallization temperature (Tc) ranging from 260°C to 290°C. The crystalline polyamide ester resin has excellent heat resistance, discoloration resistance and moldability.