Abstract:
It's a type of top mount surface airflow heatsink, utilizing the upper ceiling wall separated by an air gap, working together with the upper surface of a heating device (microprocessor) producing an air current. It's a simple device, with a low cost using the Reynolds Equation Re=(ρu m d)/μ≥2,500; with p being the fluid density, u m being the free-stream fluid velocity, d being the pipe distance or diameter, μ being the fluid viscosity. Since the airflow produces air turbulence, it causes the frequent heat exchanges in the air. It also causes the obvious temperature changes within the different layers of air. Therefore, it increases tremendously, the efficiency of dissipating the heat. It requires only the input of the air. The operation is simple and it allows the usage of even higher heat generating devices. Thus it promotes the alternative usage of this top mount heatsink device within the installation of circuit board components.
Abstract:
It s a type of top mount surface airflow heatsink, utilizing the upper ceiling wall separated by an air gap, working together with the upper surface of a heating device (microprocessor) producing an air current. It's a simple device, with a low cost using the Reynolds Equation Re=(ρu m d)/μ≥2,500; with ρ being the fluid density, u m being the free- stream fluid velocity, d being the pipe distance or diameter, μ being the fluid viscosity. Since the airflow produces air turbulence, it causes the frequent heat exchanges in the air. It also causes the obvious temperature changes within the different layers of air. Therefore, it increases tremendously, the efficiency of dissipating the heat. It requires only the input of the air. The operation is simple and it allows the usage of even higher heat generating devices. Thus it promotes the alternative usage of this top mount heatsink device within the installation of circuit board components.