Abstract:
Methods, apparatuses and systems directed to partitioning access points into two or more network access layers, such as overlay and underlay network access layers. According to one implementation of the present invention, a wireless network management system partitions a set of wireless access points into an overlay network for low-functionality clients and an underlay network for high-functionality clients. As described in further detail below, each of the overlay and underlay networks provides a class of network service, where each class of network service differs relative to at least one attribute (e.g., type of 802.11 access, data rates, High-Density, Quality-of-Service, encryption, compression, etc.). For didactic purposes, the overlay network is also referred to as the overlay network service layer (NSL) and the underlay network is referred to as the underlay NSL. In one implementation of the present invention, a partitioning algorithm is used to partition wireless access points into overlay and underlay networks. As described in further detail below, the partitioning algorithm, in one implementation, automatically assigns access points to the overlay and underlay networks based on the coverage needs of each network and the coverage parameters of each access point. In one implementation, the partitioning algorithm can be configured such that the overlay network provides maximum coverage for low-functionality clients, and the underlay network enables maximum performance for high-functionality clients.
Abstract:
In one embodiment, an apparatus includes a plurality of antennas, a receiver in communication with said plurality of antennas for receiving one or more packets in a block based modulation environment, a switch interposed between a portion of the antennas and the receiver for switching between the antennas, and a processor for calculating angle of arrival for use in identifying a location of a mobile device transmitting the one or more packets.
Abstract:
In one embodiment, a method includes identifying, responsive to a triggering event, one or more radio frequency (RF) firewall transceivers that neighbor a data wireless access point to which a given wireless client is communicating; configuring one or more of the identified neighboring RF firewall transceivers to detect RF frames transmitted by the wireless client; causing the data wireless access point to transmit one or more wireless messages operative to cause the wireless client to transmit RF frames; collecting RF signal data corresponding to the RF frames transduced by one or more of the identified neighboring RF firewall transceivers; transmitting the collected RF signal data to a location system; receiving from the location system an indication of the location of the wireless client; and applying one or more network access policies based on the indication of the location.
Abstract:
Methods, apparatuses and systems directed to facilitating load balancing and bandwidth a) location in wireless mesh networks. Generally, according to one implementation of the present invention., routing nodes implement a contention-based media access mechanism and self-allocate bandwidth within a wireless mesh network by dynamically modifying one or more contention-based transmission control parameters. The routing nodes determine a hop count and adjust one or more contention parameters based at least in part, on the hop count.
Abstract:
In one embodiment, a method includes computing a probability surface corresponding to the location probability of the wireless node within a physical region based on the received signal strength data associated with a wireless node and an RF model of the physical region; computing, based on the probability surface, an aggregate probability (Pin) of the wireless node being inside a perimeter defined with the physical region! computing, based on the probability surface, an aggregate probability (Pout) of the wireless node being outside the perimeter; computing a probability ratio of the aggregate probabilities Pin to Pout; and determining whether the wireless node is inside or outside the perimeter based on a comparison of Pout and Pin.