Abstract:
A method for evaluating number of additional admissible calls for use in call admission control includes tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets, receiving a call admission request, and calculating the number of admissible calls. The number of admissible calls is calculated based on a channel bandwidth requirement determined from the percentage of channel busy time and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets. The call admission request is approved if the number of admissible calls is greater than one and rejected if the number of admissible calls is less than one.
Abstract:
A method of rate shifting specially suited for the voice traffic, which differentiates poor channel conditions from a heavily loaded channel of a WLAN and adapts to the network traffic condition and channel condition promptly with low rate of false shifting. Determining when to rate shift is based on a combination of the received signal strength indication and the retry rate.
Abstract:
Described herein are a computer-implemented method of determining a power plan/frequency plan combination assigning transmit frequency channels and transmit powers for a plurality of managed access points (APs) of a wireless network. Also described herein is a carrier medium carrying computer readable code configured to cause one or more processors of a processing system to implement the computer implemented method of determining a power plan/frequency plan combination. The method includes determining candidate power plans for the access points, including determining candidate transmit powers for the access points, determining a candidate frequency plan corresponding to each of the determined candidate power plans using a frequency plan determining method to determine a set of candidate power plan/frequency plan combinations, and rating each combination of a candidate power plan and candidate frequency plan according to an evaluation criterion, and selecting a preliminary power plan/frequency plan combination based on the rating. One embodiment of the method further includes determining a final power plan for the preliminary frequency plan of the preliminary power plan/frequency plan combination to obtain a final power plan/frequency plan combination.
Abstract:
In accordance with one embodiment, an article of manufacture embodied in a computer-readable medium for use in a processing system for modeling configurations of a wireless local area network is provided. The article of manufacture includes a characteristic and configurations receiving logic for causing the processing system to determine a set of original characteristics and configurations of the wireless local area network. As well, a simulation logic for causing the processing system to simulate an outcome based upon a set of configurations in accordance with a goal. In other embodiments, the goal may be user defined or based upon historical data. Further, a configuration creation logic for causing the processing system to create a s et of new configurations based upon the outcome and a management logic for causing the processing system to apply the set of new configurations to the wireless local area network are provided.
Abstract:
Described herein are a computer-implemented method of determining a power plan/frequency plan combination assigning transmit frequency channels and transmit powers for a plurality of managed access points (APs) of a wireless network. Also described herein is a carrier medium carrying computer readable code configured to cause one or more processors of a processing system to implement the computer implemented method of determining a power plan/frequency plan combination. The method includes determining candidate power plans for the access points, including determining candidate transmit powers for the access points, determining a candidate frequency plan corresponding to each of the determined candidate power plans using a frequency plan determining method to determine a set of candidate power plan/frequency plan combinations, and rating each combination of a candidate power plan and candidate frequency plan according to an evaluation criterion, and selecting a preliminary power plan/frequency plan combination based on the rating. One embodiment of the method further includes determining a final power plan for the preliminary frequency plan of the preliminary power plan/frequency plan combination to obtain a final power plan/frequency plan combination.
Abstract:
A technique for determining when to change a data rate by determining the cause of packet loss. The technique distinguishes between collision mediated packet loss and poor signal mediated packet loss. Rate shifting to a lower rate is performed after determining poor signals are causing packet loss. After switching to a lower rate, the packet loss rate can be compared to the pre-switch packet loss rate. If the packet loss rate has not improved by shifting to a lower data rate, then the data rate can be shifted to a higher rate. The technique can use a combination of channel response, signal strength, packet loss rate and throughput to determine when to switch data rates. A communication unit can maintain separate histories for each unit it is communicating with and employ a different data rate for each unit.
Abstract:
A technique for multiple receiver aggregation that allows for multiple immediate responses of acknowledgements or block acknowledgements. The technique uses a spoofed network allocation vector (NAV) (124) implemented within an aggregate's PLCP header (112) to protect the aggregate and all of the immediate responses from multiple receivers. The immediate responses are scheduled, the information indicating the scheduled offset time and granted transmission duration for response of each receiver being included in the physical sublayer data unit (PSDU) headers within the aggregate.
Abstract:
A technique for multiple receiver aggregation that allows for multiple immediate responses of acknowledgements or block acknowledgements. The technique uses a spoofed network allocation vector (NAV) (124) implemented within an aggregate's PLCP header (112) to protect the aggregate and all of the immediate responses from multiple receivers. The immediate responses are scheduled, the information indicating the scheduled offset time and granted transmission duration for response of each receiver being included in the physical sublayer data unit (PSDU) headers within the aggregate.
Abstract:
A technique for multiple receiver aggregation that allows for multiple immediate responses of acknowledgements or block acknowledgements. The technique uses a spoofed network allocation vector (NAV) (124) implemented within an aggregate's PLCP header (112) to protect the aggregate and all of the immediate responses from multiple receivers. The immediate responses are scheduled, the information indicating the scheduled offset time and granted transmission duration for response of each receiver being included in the physical sublayer data unit (PSDU) headers within the aggregate.