Abstract:
In one embodiment, a method by an apparatus of a Border Gateway Protocol (BGP) network includes accessing an attestation token for the apparatus. The method further includes encoding the attestation token in a BGP signaling message. The method further includes sending the BGP signaling message with the encoded attestation token to a second apparatus of the BGP network.
Abstract:
Resource rationing for network slices in segment routing networks may be provided. A network slice may be created in a communication network. A portion of network resource may be dedicated to the network slice. The dedicated portion of network resource may be bound to the network slice using a segment identifier. The segment identifier may be advertised to the communication network. Data packets associated with the network slice may be routed using the dedicated portion of network resource.
Abstract:
In one embodiment, a Segment Routing network node provides efficiencies in processing and communicating Internet Protocol packets in a network. An Internet Protocol (IP) packet, possibly a Segment Routing packet, is received by a node in a network, which updates the packet according to a corresponding Segment Routing Policy, that includes an ordered list of Segment Identifiers comprising, in first-to-last order, a first Segment Identifier followed by one or more subsequent Segment Identifiers. The updating of the packet includes setting the Destination Address to the first Segment Identifier, and adding said one or more subsequent Segment Identifiers, but not the first Segment Identifier, in a first Segment Routing Header. The updated packet is sent into the network without the first Segment Identifier being added to a Segment Routing Header in response to the Segment Routing Policy.
Abstract:
In one embodiment, a method comprises selecting, by an ingress provider edge router, one of first or second provider edge routers as a primary router for reaching a destination via a core network, and selecting the other of the first or second provider edge routers as a backup router for reaching the destination via the core network; and inserting, into an IPv6 data packet destined for the destination, a primary label assigned by the primary router and a repair label assigned by backup router, and an IPv6 extension header specifying first and second segment identifiers associated with the respective first and second provider edge routers and a protected flag that enables fast rerouting of the IPv6 data packet to the backup router if the primary router is unavailable.
Abstract:
One or more functions to be performed on a packet at one or more network nodes along a network path are determined at a network device. A packet is generated which includes a packet header. Included in the packet header are an instruction pointer and an instruction portion. A first instruction for the one or more functions to be performed at the one or more network nodes is written to the instruction portion. Additionally, a value pointing to the first instruction is written to the instruction pointer. The packet is transmitted along the network path from the network device.
Abstract:
In one embodiment, a packet and a segment ID stack is received at a node. The segment ID stack includes a plurality of segment IDs, one of which is a first area-segment ID that identifies a first area of a subdivided network. One of a plurality of forwarding tables at the node is selected based on the first area-segment ID. Thereafter, the packet is forwarded based on information contained in the selected forwarding table.
Abstract:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
Abstract:
In one embodiment, a device (e.g., a path computation element, PCE) monitors a tunnel set-up failure rate within a computer network, and determines whether to adjust an accuracy of routing information based on the tunnel set-up failure rate. For instance, the tunnel set-up failure rate being above a first threshold indicates a need for greater accuracy. In response to the tunnel set-up failure rate being above the first threshold, the device may then instruct one or more routers to shorten their routing update interval in the computer network.
Abstract:
Disclosed are, inter alia , methods, apparatus, computer-readable media, mechanisms, and means for instrumenting real-time customer packet traffic. These measured delays can be used to determine whether or not the performance of a packet switching device and/or network meets desired levels, especially for complying with a Service Level Agreement.
Abstract:
A local fast reroute (FRR) technique is implemented at the edge of a computer network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being "protected" (i.e., rerouted) data packets before they are forwarded to the backup edge device. The backup edge device identifies protected data packets as those which contain a predetermined "service" label in their MPLS label stacks. In other words, the service label is used as an identifier for packets that have been FRR rerouted. Upon receiving a data packet containing a service label, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.