Abstract:
An analog processor for use with digital satellites is disclosed. The analog processor is connected between the receiving circuitry of the satellite and a pool of digital on-board processors, and segments the bandwidth of uplink RF beams into sub-bands that can be processed more readily with standard, low-risk, low-power digital processors. Using the present invention, the risk of employing a particular digital processor technology can be managed and optimized. The present invention also provides for the dynamic allocation and reallocation of the available on-board digital processing bandwidth based on the anticipated traffic pattern and changes in the traffic pattern. In addition, the present invention facilitates the use of standard and non-standard redundancy schemes at minimal hardware expense.
Abstract:
An analog processor for use with digital satellites is disclosed. The analog processor is connected between the receiving circuitry of the satellite and a pool of digital on-board processors, and segments the bandwidth of uplink RF beams into sub-bands that can be processed more readily with standard, low-risk, low-power digital processors. Using the present invention, the risk of employing a particular digital processor technology can be managed and optimized. The present invention also provides for the dynamic allocation and reallocation of the available on-board digital processing bandwidth based on the anticipated traffic pattern and changes in the traffic pattern. In addition, the present invention facilitates the use of standard and non-standard redundancy schemes at minimal hardware expense.
Abstract:
An analog processor for use with digital satellites is disclosed. The analog processor is connected between the receiving circuitry of the satellite and a pool of digital on-board processors, and segments the bandwidth of uplink RF beams into sub-bands that can be processed more readily with standard, low-risk, low-power digital processors. Using the present invention, the risk of employing a particular digital processor technology can be managed and optimized. The present invention also provides for the dynamic allocation and reallocation of the available on-board digital processing bandwidth based on the anticipated traffic pattern and changes in the traffic pattern. In addition, the present invention facilitates the use of standard and non-standard redundancy schemes at minimal hardware expense.
Abstract:
A multi-beam DBS satellite system capable of providing spectrally efficient regional programming is disclosed. The inventive system includes at least one DBS satellite having a repeater connected between multiple uplink antennas and multiple downlink antennas. The repeater has a switching processor and a formatting processor. The switching processor includes circuitry for filtering individual channels of information from the uplink frequency division multiplexed (FDM) beams received at the uplink antennas, and also includes circuitry for switching the channels of information to form a set of switched channels. These switched channels are then combined and routed to the formatting processor. The formatting processor converts the switched FDM information into a combined digital TDM signal that preferably corresponds to the DVB standard. Using this repeater, the present invention is capable of linking different geographical sources of programming information to multiple downlink beams in a flexible and spectrally efficient manner for direct transmission to home receivers.
Abstract:
A multi-beam DBS satellite system capable of providing spectrally efficient regional programming is disclosed. The inventive system includes at least one DBS satellite having a repeater connected between multiple uplink antennas and multiple downlink antennas. The repeater has a switching processor and a formatting processor. The switching processor includes circuitry for filtering individual channels of information from the uplink frequency division multiplexed (FDM) beams received at the uplink antennas, and also includes circuitry for switching the channels of information to form a set of switched channels. These switched channels are then combined and routed to the formatting processor. The formatting processor converts the switched FDM information into a combined digital TDM signal that preferably corresponds to the DVB standard. Using this repeater, the present invention is capable of linking different geographical sources of programming information to multiple downlink beams in a flexible and spectrally efficient manner for direct transmission to home receivers.
Abstract:
A repeater for a multibeam communications satellite combines the features of coaxial channel interbeam switching and subchannelization of some of the channels. In one embodiment described, the input radio-frequency signals from the input beams are fed through the input multiplexers to form channels. Some, but not all, channels are subsequently subchannelized for interbeam switching. In another embodiment of the invention, a portion of the incoming radio frequency signals bypasses the input demultiplexer and is filtered for noise-limiting reasons, converted down to an intermediate frequency and then subchannelized using SAW filters. The specification also teaches that digital techniques can be used to obtain the same results. Especially in the case of satellites with a large number of beams and a large number of channels, it is not necessary to have full interbeam switching of all the subchannels derived from one channel: instead, the specification proposes the use of parallel configurations of smaller, less complex switching networks.