MACHINE GUIDANCE INTEGRATION
    1.
    发明申请

    公开(公告)号:US20210017859A1

    公开(公告)日:2021-01-21

    申请号:US16857357

    申请日:2020-04-24

    Abstract: Disclosed herein is a system for controlling a mining machine within an underground mine. A rotatable laser source sends laser light and return light sensor receives reflected laser light and provides an indication of distance and return light intensity at multiple different rotation angles. A co-ordinate reference point comprises a pattern of varying reflectivity and provides at least a 2D co-ordinate position. A processor determines an absolute co-ordinate position in space of the mining machine as the mining machine moves through the underground mine. The processor collects intensity values of reflected laser light for multiple respective rotation angles and detects the pattern of the reference point in the multiple intensity values of reflected laser light, and determines the absolute co-ordinate position in space of the mining machine based on spatial information of the detected pattern.

    DEVICE AND METHOD FOR MONITORING MATERIAL FLOW PARAMETERS ALONG A PASSAGE

    公开(公告)号:US20200249058A1

    公开(公告)日:2020-08-06

    申请号:US16637493

    申请日:2018-08-07

    Abstract: Described herein is a device (1) for measuring parameters of a material (3) flowing along a passage (5), the passage having two longitudinally spaced apart ends and transverse sides defined by one or more sidewalls (7, 9). The device (1) includes a laser source (15) positioned at a first location within or adjacent a side of the passage (5) and configured to generate a laser beam (17) at one or more predetermined frequencies. A beam projection element (21, 27) projects the laser beam (17) transversely across the passage (5) to irradiate the material (3) within a measuring zone (19). The measuring zone (19) includes a transverse region extending greater than 50% of the width of the passage (5). An optical imaging device (29) is positioned at a second location within or adjacent the passage (5) and configured to capture images of backscattered light from material (3) within the measuring zone (19). A processor (41) is in communication with the optical imaging device (29) and is configured to process the captured images and perform a scattering analysis to determine parameters of the material (3) throught the passage (5).

Patent Agency Ranking