Abstract:
The present disclosure describes a fiber enclosure. The fiber enclosure may include a body having a plurality of walls defining an interior cavity, a cover pivotally coupled to the body to move between an opened position and a closed position, a plurality of cable glands located on one of the walls, the plurality of cable glands defining at least one input port and at least one output port, an optical component panel residing within the interior cavity of the body, the optical component panel including at least one optical component arrangement configured to connect an incoming cable and an outgoing cable, the optical component panel slidably coupled to a frame such that the optical component panel is moveable between an unengaged position and an engaged position; and an electrical component panel residing within the interior cavity of the body.
Abstract:
An assembly includes: a hybrid power/fiber optic cable comprising pluralities of power conductors and optical fibers, the plurality of power conductors and the plurality of optical fibers contained within a common jacket; a first breakout canister; and a second breakout canister. The hybrid power/fiber optic cable enters the first breakout canister and a plurality of power cords exit the first breakout canister, the power conductors of the hybrid power/fiber optic cable and the power cords being electrically connected within the first breakout canister, a respective one of a plurality of first conduits protecting each of the plurality of power cords. The plurality of optical fibers enters the first breakout canister and exits the first breakout canister, the exiting plurality of optical fibers being protected by a second conduit attached to the first breakout canister. The plurality of optical fibers enters the second breakout canister and exits the second breakout canister.
Abstract:
A mounting system for facilitating ordered mating of plural connectors includes a first plate having plural mounting positions for first connectors. A second plate is attached to the first plate by a standoff. A housing extends between the first and second plates and substantially covers an area between the first and second plates. In a keying embodiment, each mounting position has an inner perimeter shape different than the others. Each connector of plural first connectors includes a threaded portion holding a first nut with an outer perimeter having a shape unique as compared to the other first nuts. The outer perimeter of the first nut seats into one, and only one, of the plural mounting positions. A third plate is mounted to and spaced from the first plate. The third plate includes plural keyholes which are aligned to the plural mounting positions. Each keyhole has an inner perimeter shape matching the inner perimeter shape of the mounting position to which the keyhole is aligned. The keyholes only permit a second connector, with a matching key nut, to pass therethrough and mate into the first connector in the aligned mounting position.
Abstract:
A hybrid cable includes a sleeve surrounding conductors and optical fibers. The sleeve is attached to a transition element. In one embodiment, the optical fibers exiting the transition element are surrounded by a first jacket, and the conductors exiting the transition element are surrounded by a second jacket. The sleeve may be attached to a second transition element, such that the conductors and optical fibers pass through the second transition element, and at least the conductors enter a flexible tube and pass to a connector. If the conductors and optical fibers pass through the flexible tube, the connector may be a hybrid connector terminating both the conductors and optical fibers. The flexible tube can twist about its axis of extension per linear foot without incurring a kink to a greater degree than the sleeve can twist about its axis of extension per linear foot without incurring a kink.
Abstract:
A cable-connector assembly includes: a cable including signal-carrying members, the signal-carrying members being circumferentially surrounded by a conduit; a connector configured to mate with a mating connector, the signal carrying members being connected with ports on the connector; and a generally cylindrical housing that circumferentially surrounds the signal-carrying members, the housing including a narrow neck that fits within an end of the conduit and a wide main portion that engages the connector.
Abstract:
An assembly for breaking out hybrid power/fiber cable, comprising: a hybrid power/fiber cable comprising a plurality of conductors and a plurality of optical fibers, wherein first lengths of the conductors and the optical fibers are circumferentially surrounded by an armor layer, and wherein a portion of the armor layer is circumferentially surrounded by a cable jacket, and wherein second lengths of the conductors arid the optical fibers are free of the armor layer and the cable jacket; a breakout sleeve having an internal bore, a portion -of the cable jacket and a portion of the armor layer residing in the internal bore, and portions of the second lengths of the conductors and optical fibers residing in the internal bore; wherein the sleeve is fixed to the cable jacket.
Abstract:
A cable distribution assembly includes: a housing having a first side and a second side, wherein a plurality of bores extend through the housing from the first side to the second side; a plurality of furcation tubes inserted into the bores at the second side of the housing; a trunk cable comprising a jacket and a plurality of optical fibers, wherein one or more of the optical fibers are threaded through the bores and into the furcation tubes; a spacer adjacent the first side of the housing and the cable jacket, the spacer creating space in which the optical fibers are routed from the trunk cable to the bores at the first side of the housing; and a cover that covers the spacer and at least partially covers the trunk cable and the first side of the housing.
Abstract:
The present disclosure describes sealing boots for protecting an optical interconnection. A sealing boot may include a main body having an interior cavity, the interior cavity having an annular recess adjacent to one end of the main body, the annular recess configured to receive a feature of a remote radio unit, and a neck merging with the opposing end of the main body and having a cylindrical inner surface that defines a bore that is continuous with the cavity of the main body, the inner surface having an inner diameter that is less than an inner diameter of the interior cavity of the main body. The sealing boot is configured to surround at least a portion of a fixed active optical connector when the fixed active optical connector is plugged into the remote radio unit.
Abstract:
The present disclosure describes fusion spliced cable assemblies. An assembly may include a first and a second fiber optic cable, where an end of at least a first optical fiber from the first fiber optic cable is fusion spliced together with an end of at least a second optical fiber from the second fiber optic cable, the first optical fiber having a first length of prepared fiber extending from the spliced end of the first optical fiber to a transition point of the first optical fiber, the second optical fiber having a second length of prepared fiber extending from the spliced end of the second optical fiber to a transition point of the second optical fiber, where the transition point of the first optical fiber is a distance from the transition point of the second optical fiber, and where a total length of prepared fiber is the sum of the first length of prepared fiber for the first optical fiber and the second length of prepared fiber for the second optical fiber; a support configured to engage at least a portion of the total length of prepared fiber such that the distance between the transition points of each optical fiber is less than the total length of prepared fiber of the first and second optical fibers; and a transition housing coupled to the first and second fiber optic cables and surrounding the support. Fusion spliced cable assembly breakout kits are also provided.
Abstract:
A transition device for interconnecting a hybrid trunk cable and electronic equipment includes: an enclosure having first and second ends; a trunk power connector mounted to the first end of the enclosure; a trunk optical connector mounted to the first end of the enclosure; and a plurality of hybrid jumper cables exiting the second end of the enclosure, each of the hybrid jumper cables including at least two power conductors terminated with jumper power connectors and at least one optical fiber terminated with a jumper optical connector.