Abstract:
A metrocell antenna includes a plurality of linear arrays of first frequency band radiating elements, a first enclosure that includes a first of the linear arrays of first frequency band radiating elements mounted therein, a second enclosure that includes a second of the linear arrays of first frequency band radiating elements mounted therein, a third of the linear arrays of first frequency band radiating elements mounted within one of the first and second enclosures, a first RF port that is mounted through the first enclosure and a first blind-mate connector that provides an electrical connection between the first enclosure and the second of the linear arrays of first frequency band radiating elements that is mounted in the second enclosure.
Abstract:
Base station antennas include a plurality of multiplexer filters and a multi-column array of radiating elements that includes a plurality of sub-arrays. Each filter may have a first and second ports that are configured to pass RF signals in respective first and second frequency bands and a third common port that is coupled to a respective one of a plurality of sub-arrays. These antennas also include first frequency band ports that are coupled to the first ports of respective subsets of the multiplexer filters and second frequency band ports that are coupled to the second ports of at least some of the multiplexer filters. The antenna may operate as a MIMO sector antenna in the first frequency band and as a sector-splitting antenna in the second frequency band.
Abstract:
A dipole antenna includes a planar reflector and a radiating element. The radiating element includes first and second pairs of dipoles on a surface of the planar reflector. The first and second pairs of dipoles respectively include arm segments arranged around a central region in a box dipole arrangement. The arm segments may be printed circuit board portions having respective metal segments and respective inductor-capacitor circuits thereon. The inductor-capacitor circuits define a filter aligned to a frequency range higher than an operating frequency range of the first and second pairs of dipoles.
Abstract:
A small cell base station antenna includes a tubular reflector that has at least first through fourth faces that each face in different directions. The antenna further includes first through fourth arrays of radiating elements that are mounted on the respective first through fourth faces of the tubular reflector. The antenna also includes a passive beamforming network that has first through fourth outputs that are coupled to the respective first through fourth arrays of radiating elements.
Abstract:
A base station antenna includes a backplane and a plurality of radiating elements that extend forwardly from the backplane. The antenna further includes a plurality of feed boards, and each of the feed boards has a respective group of one or more of the radiating elements mounted thereon. The antenna also includes a calibration port and a calibration circuit that has a calibration combiner that has an output that is coupled to the calibration port and a plurality of directional couplers that are coupled to the calibration combiner. At least a first portion of a first of the first directional couplers is implemented on a first of the feed boards.
Abstract:
A base station antenna includes a reflector having a plurality of pairs of opposed faces, a connector port, a plurality of radiating elements mounted to extend outwardly from the respective faces of the reflector, where each of the radiating elements is coupled to the connector port, and a plurality of RF lenses, each RF lens mounted outwardly of a respective one of the radiating elements and associated with the respective radiating element. The number of radiating elements coupled to the connector port is equal to the number of faces on the reflector.
Abstract:
A base station antenna includes a first set of radiating elements that are configured to generate a first antenna beam that has a first peanut-shaped antenna pattern in an azimuth plane and a second set of radiating elements that are configured to generate a second antenna beam that has a second peanut-shaped antenna pattern in the azimuth plane. A longitudinal axis of the first peanut-shaped antenna pattern in the azimuth plane is rotated approximately ninety degrees from a longitudinal axis of the second peanut-shaped antenna pattern in the azimuth plane.
Abstract:
Systems and methods for operating an antenna providing a coverage area using beamforming and carrier aggregation techniques. The proposed system aims to optimize the use of carrier aggregation for beamforming systems. The system may include a beamforming module coupled to first array and second arrays of radiating elements, the first array being configured to provide wireless coverage on a first frequency carrier in a first coverage area, and the second array being configured to provide wireless coverage on a second frequency carrier in a second coverage area. The beamforming module may be configured to receive one or more indicators associated with one or more user equipments (UEs) in the coverage area. Based on the one or more indicators, the beamforming module may be configured to dynamically adjust, in the RF domain, at least one of a location of the second coverage area and a size of the second coverage area.
Abstract:
Phased array antennas include a plurality of radiating elements and a plurality of RF lenses that are generally aligned along a first vertical axis. Each radiating element is associated with a respective one of the RF lenses, and each radiating element is tilted with respect to the first vertical axis.
Abstract:
Beam forming antennas for base station applications are configured as dielectric resonator antennas (DRAs) having arrays of dielectric resonator radiating elements (DRRE) therein with dual-polarized radiating properties. Each DRRE includes a dielectric radiating element (DRE) electromagnetically coupled by a resonant cavity to a respective cross-polarized feed network, which is responsive to first and second radio frequency (RF) input feed signals. Each resonant cavity may be configured as a polymer-filled resonant cavity, and each DRE may be configured as a cylindrically-shaped or dome-shaped dielectric radiating element.