Abstract:
A light source, for example a light emitting diode, can emit light and have an associated optical axis. The source can be deployed in applications where it is desirable to have illumination biased laterally relative to the optical axis, such as in a street luminaire where directing light towards a street is beneficial. The source can be coupled to an optic that comprises a cavity. At least a portion of the cavity can have an outline that is egg-shaped in cross section. A backside of the cavity (or a backside portion of the optic) can have an irregular shape for receiving the light emitting diode, for example to form a receptacle shaped to fit a circuit board on which the light emitting diode is mounted.
Abstract:
A light module can comprise a light emitting diode that generates light and an optic that manipulates or manages the resulting light. The optic can direct the generated light off axis, resulting in an illumination pattern that is biased towards one side of the light module, for example in a desired direction. Thus, the optic can transform the emission pattern of the light emitting diode to create an illumination pattern that is aimed in a desired direction. The optic can comprise a light-blocking shield to suppress, manage, or redirect light that would otherwise emanate from the light module in an unintended direction, for example opposite the desired direction.
Abstract:
An optical system includes an optic and a reflector. The optic has a rear surface with a cavity configured to receive light from a light source and a front surface opposite the rear surface, the front surface configured to emit light processed by the optic and the front surface including a centrally disposed convex region. The front surface and the rear surface of the optic meet at a rim that extends peripherally with respect to the cavity. The reflector is disposed adjacent the optic and comprises a light-receiving end adjoining the rim, a light-emitting end, and a tapered region that extends between the light-receiving end and the light-emitting end.
Abstract:
A light source, for example a light emitting diode, can emit light and have an associated optical axis. The source can be deployed in applications where it is desirable to have illumination biased laterally relative to the optical axis, such as in a street luminaire where directing light towards a street is beneficial. The source can be coupled to an optic that comprises an inner surface facing the source and an outer surface that is opposite the inner surface. The inner surface can comprise a refractive surface that receives light headed away from the optical axis of the light source, for example opposite the street. The refractive surface can form the received light into a beam. The outer surface of the optic can reflect the beam back across the optical axis, for example so that light headed away from the street is redirected towards the street.
Abstract:
A light source, for example a light emitting diode, can emit light and have an associated optical axis. The source can be deployed in applications where it is desirable to have illumination biased laterally relative to the optical axis, such as in a street luminaire where directing light towards a street is beneficial. The source can be coupled to an optic that comprises a cavity. At least a portion of the cavity can have an outline that is egg-shaped in cross section. A backside of the cavity (or a backside portion of the optic) can have an irregular shape for receiving the light emitting diode, for example to form a receptacle shaped to fit a circuit board on which the light emitting diode is mounted.