Abstract:
A power distribution module (PDM) can include an input portion configured to receive high-voltage (HV) power from a power source. The PDM can also include a power transfer device electrically coupled to the input portion, where the power transfer device is configured to generate at least one low-voltage signal using the HV power. The PDM can further include an output section electrically coupled to the power transfer device and including a number of output channels. The PDM can also include at least one switch disposed between the output section and the power transfer device, where the at least one switch has an open position and a closed position. The PDM can further include a controller communicably coupled to the at least one switch, where the controller operates the at least one switch between the closed position and the open position based on a power demand measured at the output section.
Abstract:
A processor receives data associated with a device. On the basis of the data associated with the device, the processor modulates a light from the artificial light source at a rate imperceptible to a human eye while detectable by a light sensor device. The modulated light is representative of the data associated with the device. The modulated light is detected, demodulated, and decoded by the light sensor device to retrieve the data associated with the device. Further, the data associated with the device is presented by the light sensor device to a user. In addition, the light sensor device is configured to receive input data from the user and communicate the input data to the processor via a wireless link. The processor is configured to receive the input data from the light sensor device and effect a change in a characteristic of the device based on the received input data.
Abstract:
An imaging sensor determines an influence of artificial light from one or more artificial light sources and an influence of natural light in an area associated with a lighting system. On the basis of the influence of the natural light and the influence of the artificial light, the imaging sensor determines the location of the one or more artificial light sources with respect to the location of the imaging sensor. Further, the imaging sensor allocates a portion of the area as an area of influence of the imaging sensor based on a threshold change in luminescence of the area associated with switching on or switching off of the one or more artificial light sources. Responsively, the imaging sensor associates at least one artificial light source of the one or more light sources and occupancy sensors corresponding to the at least one artificial light source with the allocated area of influence.
Abstract:
A system for determining occupancy includes a first luminaire having a first camera to detect a first occupant and a second luminaire having a second camera to detect a second occupant. The system further includes a processor to determine whether the first camera and the second camera have a common visual field and to determine whether the first occupant and the second occupant are the same occupant in response to determining that the first camera and the second camera have a common visual field.
Abstract:
A distributed low voltage power system is disclosed herein. The system can include a power source generating line voltage power, and a first line voltage cable having a first line voltage end and a second line voltage end, where the first line voltage end is coupled to the power source. The system can also include a first power distribution module (PDM) comprising a first power transfer device and a first output channel. The system can further include a first LV cable having a first LV end and a second LV end, where the first LV end is coupled to the first output channel of the first PDM. The system can also include at least one first LV device operating on the first LV signal, where the second LV end of the first LV cable is coupled to the at least one first LV device.