Abstract:
A fluid encapsulated MEMS optical switch includes an optical waveguide matrix with MEMS mirrors situated in trenches located at waveguide cross-points. The trenches are filled with collimation-maintaining fluid and the mirrors are immersed therein. The collimation maintaining fluid prevents the light beam from spreading when it enters the switch cross-points. This feature enables the use of much smaller MEMS mirrors and prevents some of the typical MEMS mirror problems found in the related art. In particular, the MEMS mirror disclosed in the present invention is reduced to approximately 15 mum wide and 2 mum thick, resulting in shorter actuation distances of approximately 15 mum. This feature results in an optical switch having faster switching times.
Abstract:
A fluid encapsulated MEMS optical switch includes an optical waveguide matri x with MEMS mirrors (22) situated in trenches located at waveguide cross-point s (29). The trenches are filled with collimation-maintaining fluid (30) and th e mirrors (22) are immersed therein. The collimation maintaining fluid (30) prevents the light beam from spreading when it enters the switch cross-point s. This feature enables the use of much smaller MEMS mirrors (22) and prevents some of the typical MEMS mirror (22) problems found in the related art. In particular, the MEMS mirrors (22) disclosed in the present invention is reduced to approximately 15 wide and 2 thick, resulting in shorter actuation distances to approximately 15. This feature results in an optical switch having faster switching times.
Abstract:
A fluid encapsulated MEMS optical switch includes an optical waveguide matrix with MEMS mirrors (22) situated in trenches located at waveguide cross-points (29). The trenches are filled with collimation-maintaining fluid (30) and the mirrors (22) are immersed therein. The collimation maintaining fluid (30) prevents the light beam from spreading when it enters the switch cross-points. This feature enables the use of much smaller MEMS mirrors (22) and prevents some of the typical MEMS mirror (22) problems found in the related art. In particular, the MEMS mirrors (22) disclosed in the present invention is reduced to approximately 15 wide and 2 thick, resulting in shorter actuation distances to approximately 15. This feature results in an optical switch having faster switching times.
Abstract:
A fluid encapsulated MEMS optical switch includes an optical waveguide matrix with MEMS mirrors (22) situated in trenches located at waveguide cross-points (29). The trenches are filled with collimation-maintaining fluid (30) and the mirrors (22) are immersed therein. The collimation maintaining fluid (30) prevents the light beam from spreading when it enters the switch cross-points. This feature enables the use of much smaller MEMS mirrors (22) and prevents some of the typical MEMS mirror (22) problems found in the related art. In particular, the MEMS mirrors (22) disclosed in the present invention is reduced to approximately 15 wide and 2 thick, resulting in shorter actuation distances to approximately 15. This feature results in an optical switch having faster switching times.