-
公开(公告)号:BR9813239A
公开(公告)日:2000-10-10
申请号:BR9813239
申请日:1998-12-10
Applicant: CORNING INC
Inventor: GRASIS MICHAEL EDWARD , SCOBEY MICHAEL A , SPOCK DEREK E , LAFRENIERE ROBERT W
Abstract: An optical multiplexing device is disclosed for multiplexing optical signals, for example, for a fiber-optic telecommunication system employing wavelength division multiplexing. The optical multiplexing device has a filter assembly defining a light path, preferably a multi-bounce zigzag expanded beam light path, from a common port at least to a first channel port and then a second channel port and then a pass-through port. The first channel port has a first optical filter element, for example, a multi-cavity interference filter, which is transparent to a wavelength sub-range within the wavelength range passed by the common port and the pass-through port, and substantially reflective of other wavelengths within such wavelength range. The second channel port includes a second optical filter element having light transmittance and reflectance properties substantially the same as those of the first optical filter element. The optical multiplexing device can be used to extract or drop a selected wavelength sub-range, most typically a single channel signal, from the multiplexed light, and to then inject a new signal into the multiplexed light at that same wavelength sub-range. In accordance with preferred embodiments, the optical multiplexing device serves as an add/drop filter arrangement to extract the signal of a particular channel and then immediately use the available channel by injecting a new signal at that same wavelength sub-range.
-
公开(公告)号:BR9802289A
公开(公告)日:1999-11-03
申请号:BR9802289
申请日:1998-06-26
Applicant: CORNING INC
Inventor: GRASIS MICHAEL EDWARD , SCOBEY MICHAEL ANTHONY , SPOCK DEREK ERSKINE
Abstract: An optical multiplexing device is provided comprising multiple wavelength division multiplexers cascaded together. A first one of the wavelength division multiplexers has a common port and multiple optical ports which are optically coupled to the common port. The common port may be optically coupled to a trunk line of a system employing wavelength division multiplexing, for example, a fiber-optic telecommunication system employing 4, 8, 16 or other number of multiplexed channels. The optical ports include multiple channel ports, each of which is transparent to a corresponding wavelength sub-range and reflective of other wavelengths. The second wavelength division multiplexer has a common port optically coupled to one of the optical ports of the first wavelength division multiplexer. The second wavelength division multiplexer also has multiple optical ports which are optically coupled to its common port and include multiple wavelength-selective channel ports. A waveguide, such as a fiber-optic line, can optically connect the common port of the second wavelength division multiplexer to an optical port of the first wavelength division multiplexer. The cascaded WDMs each may be optically coupled to the output of a passive coupler and a housing may be provided defining an enclosed space in which the optical multiplexing device is mounted. Optionally, additional WDMs may be cascaded with the first two WDMs in a parallel or branched formation, an in-line formation or some combination. Preferably, the channels are interleaved, such that they are removed from the multiplexed signal in certain non-sequential order. The optical multiplexing device also may employ compound interleaving wherein adjacent channels are multiplexed by different ones of the cascaded WDMs. The optical multiplexing devices can operate to add signals, remove signals or a combination of both.
-