Abstract:
A cover glass article includes a glass body having a three-dimensional shape, an inside surface, and an outside surface. Each of the inside and outside surfaces has a surface roughness (Ra) less than 1 nm and is free of indentations having diameters larger than 150 μm.
Abstract:
A method of making a shaped glass article includes placing a glass sheet on top of a mold. A heat exchanger is arranged relative to the mold such that a heat exchange surface of the heat exchanger is in opposing relation to a back surface of the mold and separated from the back surface of the mold by a gap containing a layer of gas. The height of the gap is selected such that the dominant heat transfer between the heat exchange surface and the back surface of the mold is by conduction through the layer of gas. The glass sheet is heated and formed into a shaped glass article with the mold. The heat exchanger is operated to remove heat from at least part of the mold during at least one of heating the glass sheet, forming the shaped glass article, and cooling the shaped glass article.
Abstract:
A cover glass article includes a glass body having a three-dimensional shape, an inside surface, and an outside surface. Each of the inside and outside surfaces has a surface roughness (Ra) less than 1 nm and is free of indentations having diameters larger than 150 μm.
Abstract:
Methods for compensating for the warp exhibited by three-dimensional glass covers as a result of ion exchange strengthening are provided. The methods use a computer-implemented model to predict/estimate changes to a target three-dimensional shape for the 3D glass cover as a result of ion exchange strengthening. The model includes the effects of ion exchange through the edge of the 3D glass cover. In an embodiment, the inverse of the predicted/estimated changes is used to produce a compensated (corrected) mold which produces as-molded parts which when subjected to ion exchange strengthening have shapes closer to the target shape than they would have had if the mold had not been compensated (corrected).
Abstract:
Methods for compensating for the warp exhibited by three-dimensional glass covers as a result of ion exchange strengthening are provided. The methods use a computer-implemented model to predict/estimate changes to a target three-dimensional shape for the 3D glass cover as a result of ion exchange strengthening. The model includes the effects of ion exchange through the edge of the 3D glass cover. In an embodiment, the inverse of the predicted/estimated changes is used to produce a compensated (corrected) mold which produces as-molded parts which when subjected to ion exchange strengthening have shapes closer to the target shape than they would have had if the mold had not been compensated (corrected).
Abstract:
A method of reforming glass includes placing a glass sheet on a mold having a shaping surface for forming the glass sheet into a shaped glass article. A target starting mold forming temperature and temperature window are selected for the mold. A target starting mold forming temperature and temperature window are also selected for the glass sheet. The glass sheet and mold are simultaneously exposed to a first furnace condition controlled to a furnace temperature set point above the target starting mold forming temperature until a temperature of the mold is within the first temperature window. The glass sheet and mold are simultaneously exposed to a second furnace condition controlled to a furnace temperature set point between the target starting mold forming temperature and first furnace temperature set point until a temperature of the glass sheet is within the second temperature window, after which forming of the glass sheet starts.
Abstract:
A method of making a shaped glass article includes placing a glass sheet on top of a mold. A heat exchanger is arranged relative to the mold such that a heat exchange surface of the heat exchanger is in opposing relation to a back surface of the mold and separated from the back surface of the mold by a gap containing a layer of gas. The height of the gap is selected such that the dominant heat transfer between the heat exchange surface and the back surface of the mold is by conduction through the layer of gas. The glass sheet is heated and formed into a shaped glass article with the mold. The heat exchanger is operated to remove heat from at least part of the mold during at least one of heating the glass sheet, forming the shaped glass article, and cooling the shaped glass article.
Abstract:
A system for producing articles from glass tube includes a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The system further includes a thermal imaging system that includes a thermal imager coupled to the turret for movement with the turret. The thermal imaging system may also include a mirror coupled to the thermal imager and positioned to reflect infrared light from one of the plurality of holders to the thermal imager. The thermal imaging system may measure one or more characteristics of the glass tube during the conversion process. Processes for controlling the converter using the thermal imaging system to measure one or more process variables are also disclosed.
Abstract:
A system for producing articles from glass tube includes a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The system further includes a thermal imaging system that includes a thermal imager coupled to the turret for movement with the turret. The thermal imaging system may also include a mirror coupled to the thermal imager and positioned to reflect infrared light from one of the plurality of holders to the thermal imager. The thermal imaging system may measure one or more characteristics of the glass tube during the conversion process. Processes for controlling the converter using the thermal imaging system to measure one or more process variables are also disclosed.
Abstract:
A system for producing articles from glass tube includes a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The system further includes a thermal imaging system that includes a thermal imager coupled to the turret for movement with the turret. The thermal imaging system may also include a mirror coupled to the thermal imager and positioned to reflect infrared light from one of the plurality of holders to the thermal imager. The thermal imaging system may measure one or more characteristics of the glass tube during the conversion process. Processes for controlling the converter using the thermal imaging system to measure one or more process variables are also disclosed.