Abstract:
A method includes directing a laser beam onto a phase-adjustment device such that the laser beam downstream the phase-adjustment device is a modified Airy beam having a modified Airy beam focal region having a main lobe and a plurality of side lobes. The main lobe has a lobe aspect ratio of 1.2 or greater.
Abstract:
An optical fiber for converting a Gaussian laser beam into a Bessel laser beam may include a first segment optically coupled to a second segment with a transition region, the first segment having a first outer diameter greater than a second outer diameter of the second segment. The first segment may include a first core portion with a first cladding portion extending around the first core portion. The second segment may include a second core portion with a second cladding portion extending around the second core portion. The optical fiber may have a non-axisymmetric refractive index profile or may be coupled to an end cap with a non-axisymmetric refractive index profile.
Abstract:
A method of processing a flexible glass sheet having a thickness of equal to or less than 300 µm includes separating an outer edge portion of the flexible glass sheet from a bonded portion of the flexible glass sheet along a separation path while the bonded portion of the flexible glass sheet remains bonded with respect to a first major surface of a carrier substrate. The step of separating the outer edge portion provides the flexible glass sheet with a new outer edge extending along the separation path. A lateral distance between the new outer edge of the flexible glass sheet and an outer periphery of the first major surface of the carrier substrate is equal to or less than about 750 µm.
Abstract:
Cutting a desired final shape in a glass sheet, wherein the glass sheet is about 0.3 mm or less in thickness by applying a laser beam to the glass and continuously moving the laser relative to the glass along the cutting line. The laser is of a circular shape, and cooling fluid is applied simultaneously with the application of the laser, such that the cooling fluid at least reduces the temperature of the glass in order to propagate a fracture in the glass. The method includes controlling at least one of: (i) an energy density of the laser, (ii) a velocity of the laser relative to the glass along the cutting line, (iii) a fluid flow of the cooling fluid, and (iv) a minimum radius of curvature of the cutting line, such that a B10 edge strength of a cut edge of the glass is at least about 300 MPa.
Abstract:
Prism coupling systems and methods for characterizing curved parts (20) are disclosed. A coupling surface (44) of a coupling prism (40) is interfaced to the curved outer surface of the curved part to define a coupling interface (50). Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
Abstract:
A method of measuring the bandwidth of a multi-mode optical fiber using single-ended, on-line and off-line approaches and test configurations. The method includes: transmitting a light signal through the first end of a multi-mode fiber toward the second end of the multi-mode fiber, so that a portion of the light signal is reflected by the second end toward the first end of the multi-mode fiber; and receiving the reflected portion of the light signal at the first end of the multi-mode fiber. The method also includes obtaining magnitude and frequency data related to the reflected portion of the light signal at the first end of the multi-mode fiber; and analyzing the magnitude and the frequency data to determine a bandwidth of the multi-mode optical fiber. The length of the multi-mode fiber may also increase over time during testing.
Abstract:
A photoacoustic gas detector and photoacoustic gas detection method are disclosed. The detector includes a laser source, an acoustic resonator, and at least one tuning fork positioned along a longitudinal length of the resonator. The detector is capable of performing fast measurements of the concentration of one or more target gases over a broad temperature range.
Abstract:
An external cavity laser source (10) is provided comprising an external laser cavity (10), a tunable distributed Bragg reflector (20, DBR), a DBR tuning element (22), an output reflector (30), a semiconductor optical amplifier (40, SOA), a frequency-selective optical coupler/reflector (50), and a wavelength conversion device (60). The tunable DBR, the DBR tuning element, the SOA, and the output reflector are configured to generate a fundamental laser signal characterized by a fundamental bandwidth that is narrower than the QPM bandwidth of the wavelength conversion device and can be tuned to a fundamental center wavelength within the QPM bandwidth. The frequency-selective optical coupler/reflector (50) is configured for substantially non-reflective two-way transmission of optical signals at the fundamental center wavelength and is further configured for substantially complete reflection of wavelength-converted optical signals generated by the wavelength conversion device. The output reflector (30) is configured for substantially non-reflective transmission of wavelength-converted optical signals generated by the wavelength conversion device and for substantially complete reflection of optical signals at the fundamental center wavelength.
Abstract:
A method of separating a glass ribbon includes applying a first gripper and a second gripper to the glass ribbon on an upstream side of a separation line to restrict movement of the glass ribbon and to control glass ribbon shape. The first gripper and the second gripper are positioned adjacent opposite edges of the glass ribbon. The method also includes applying laser energy at the separation line on the glass ribbon and initiating a defect at or near the separation line to cause the glass ribbon to separate at the separation line.
Abstract:
Systems and methods utilizing two Airy beams to process a non-rounded edge of a glass substrate or to cleave a glass substrate are disclosed. The method includes generating first and second Airy beams and causing them to cross at a crossing to define a curved intensity profile in the vicinity of the crossing point where the first and second Airy beams have respective local radii of curvature RA and RB. The method also includes scanning the curved intensity profile either along the non-rounded outer edge or through the glass along a scan path to form on the glass substrate a rounded outer edge having a radius of curvature RE that is smaller than the first and second local radii of curvature RA and RB. The radius of curvature RE can be adjusted by changing a beam angle between the first and second Airy beams.