Abstract:
A laminated glass article includes at least a first layer, a second layer in direct contact with the first layer, and an optical property difference between the first layer and the second layer. The optical property difference includes at least one of: (a) a transmission profile difference between a transmission profile of the first and second layers in a wavelength range from 200 nm to 2500 nm; or (b) a light-polarizing difference, whereby the second layer is light-polarizing with respect to electromagnetic irradiation in the wavelength range from 200 nm to 2500 nm; or (c) a refractive index difference between refractive indices of the first and second layers of at least 0.005, wherein one layer includes a base glass composition and the other layer includes the base glass composition and a dopant in an amount sufficient to cause the refractive index difference.
Abstract:
A glass fusion draw apparatus for molten glass stream thermal profile control, including: a first enclosure; and a first isopipe situated within the first enclosure, the first enclosure can include at least one first heating element assembly integral with the wall of the first enclosure, and the at least one first heating element is in proximity to a portion of molten glass stream over-flowing the first isopipe within the enclosure. The apparatus can also include a proximity or temperature sensing system associated with the first enclosure that senses and controls the thermal gradient properties of the molten glass stream or streams in the first enclosure. Also disclosed are methods of making and using the fusion apparatus.
Abstract:
A laminated glass article includes at least a first layer, a second layer in direct contact with the first layer, and an optical property difference between the first layer and the second layer. The optical property difference includes at least one of: (a) a transmission profile difference between a transmission profile of the first and second layers in a wavelength range from 200 nm to 2500 nm; or (b) a light-polarizing difference, whereby the second layer is light-polarizing with respect to electromagnetic irradiation in the wavelength range from 200 nm to 2500 nm; or (c) a refractive index difference between refractive indices of the first and second layers of at least 0.005, wherein one layer includes a base glass composition and the other layer includes the base glass composition and a dopant in an amount sufficient to cause the refractive index difference.
Abstract:
A glass fusion draw apparatus for molten glass stream thermal profile control, including: a first enclosure; and a first isopipe situated within the first enclosure, the first enclosure can include at least one first heating element assembly integral with the wall of the first enclosure, and the at least one first heating element is in proximity to a portion of molten glass stream over-flowing the first isopipe within the enclosure. The apparatus can also include a proximity or temperature sensing system associated with the first enclosure that senses and controls the thermal gradient properties of the molten glass stream or streams in the first enclosure. Also disclosed are methods of making and using the fusion apparatus.
Abstract:
A laminated glass article includes at least a first layer, a second layer in direct contact with the first layer, and an optical property difference between the first layer and the second layer. The optical property difference includes at least one of: (a) a transmission profile difference between a transmission profile of the first and second layers in a wavelength range from 200 nm to 2500 nm; or (b) a light-polarizing difference, whereby the second layer is light-polarizing with respect to electromagnetic irradiation in the wavelength range from 200 nm to 2500 nm; or (c) a refractive index difference between refractive indices of the first and second layers of at least 0.005, wherein one layer includes a base glass composition and the other layer includes the base glass composition and a dopant in an amount sufficient to cause the refractive index difference.