Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200° C.
Abstract:
There is disclosed a method for chemically treating a display glass substrate by treating at least one surface of the glass substrate with a heated solution containing HCl to form a depletion layer at the surface and under the surface of the glass substrate. The disclosure also relates to display glass substrates containing the depletion layer made by the disclosed process. In addition, the disclosure relates to methods of making thin-film transistors (“TFTs”) on these display glass substrates by depositing a Si layer directly on the chemically treated surface of the glass substrate, and annealing the Si layer to form polycrystalline silicon.
Abstract:
There is disclosed a method for chemically treating a display glass substrate by treating at least one surface of the glass substrate with a heated solution containing HCl to form a depletion layer at the surface and under the surface of the glass substrate. The disclosure also relates to display glass substrates containing the depletion layer made by the disclosed process. In addition, the disclosure relates to methods of making thin-film transistors (“TFTs”) on these display glass substrates by depositing a Si layer directly on the chemically treated surface of the glass substrate, and annealing the Si layer to form polycrystalline silicon.
Abstract:
A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.