Abstract:
A train of rectangular pulses is sent into a fibre (5), which pulses have such a wavelength that fibre (5) operates under anomalous dispersion conditions, such a peak power as to cause modulation instability in the fibre and such a ratio between duration and repetition period that the average power is lower than the threshold at which stimulated Brillouin effect takes place. The maximum value of instability gain is measured in the spectrum of the pulses exiting the fibre and the kerr non linearity coefficient is obtained from the maximum measured value of modulation instability gain by minimising the error, in the range of power values used for the measurement, with respect to a theoretical curve expressing such maximum gain as a function of the peak power. The device to realise the method is also provided.
Abstract:
A train of rectangular pulses is sent into a fibre (5), which pulses have such a wavelength that fibre (5) operates under anomalous dispersion conditions, such a peak power as to cause modulation instability in the fibre and such a ratio between duration and repetition period that the average power is lower than the threshold at which stimulated Brillouin effect takes place. The maximum value of instability gain is measured in the spectrum of the pulses exiting the fibre and the kerr non linearity coefficient is obtained from the maximum measured value of modulation instability gain by minimising the error, in the range of power values used for the measurement, with respect to a theoretical curve expressing such maximum gain as a function of the peak power. The device to realise the method is also provided.
Abstract:
To intercept and measure radiant energy back-scattered from the entrance end of an optical fiber irradiated by a pulsed laser beam, a semitransparent mirror is interposed between the irradiated fiber and a first lens assembly focusing the laser beam upon its entrance end while a second lens assembly directs reflected light rays toward a photodetector feeding an electronic processor. An extremity of the fiber including its entrance end is received in a chamber with light-absorbing walls filled with a liquid of substantially the same refractive index as the fiber; the mirror may be disposed either in front of the chamber entrance or in its interior.
Abstract:
A train of rectangular pulses is sent into a fibre (5), which pulses have such a wavelength that fibre (5) operates under anomalous dispersion conditions, such a peak power as to cause modulation instability in the fibre and such a ratio between duration and repetition period that the average power is lower than the threshold at which stimulated Brillouin effect takes place. The maximum value of instability gain is measured in the spectrum of the pulses exiting the fibre and the kerr non linearity coefficient is is obtained from the maximum measured value of modulation instability gain by minimising the error, in the range of power values used for the measurement, with respect to a theoretical curve expressing such maximum gain as a function of the peak power. The device to realise the method is also provided.
Abstract:
A train of rectangular pulses is sent into a fibre (5), which pulses have such a wavelength that fibre (5) operates under anomalous dispersion conditions, such a peak power as to cause modulation instability in the fibre and such a ratio between duration and repetition period that the average power is lower than the threshold at which stimulated Brillouin effect takes place. The maximum value of instability gain is measured in the spectrum of the pulses exiting the fibre and the kerr non linearity coefficient is obtained from the maximum measured value of modulation instability gain by minimising the error, in the range of power values used for the measurement, with respect to a theoretical curve expressing such maximum gain as a function of the peak power. The device to realise the method is also provided.
Abstract:
A train of rectangular pulses is sent into a fibre (5), which pulses have such a wavelength that fibre (5) operates under anomalous dispersion conditions, such a peak power as to cause modulation instability in the fibre and such a ratio between duration and repetition period that the average power is lower than the threshold at which stimulated Brillouin effect takes place. The maximum value of instability gain is measured in the spectrum of the pulses exiting the fibre and the kerr non linearity coefficient is obtained from the maximum measured value of modulation instability gain by minimising the error, in the range of power values used for the measurement, with respect to a theoretical curve expressing such maximum gain as a function of the peak power. The device to realise the method is also provided.