SYSTEMS AND METHODS FOR FABRICATING SUPERCONDUCTING INTEGRATED CIRCUITS

    公开(公告)号:US20230004851A1

    公开(公告)日:2023-01-05

    申请号:US17782261

    申请日:2020-12-03

    Abstract: A system and method for mitigating flux trapping in a superconducting integrated circuit. A first metal layer is formed having a first critical temperature and a first device, and a flux directing layer is formed having a second critical temperature. The flux directing layer is positioned in communication with an aperture location, and the aperture location is spaced from the first device to isolate the first device from flux trapped in the aperture. The superconducting integrated circuit is cooled from a first temperature that is above both the first and second critical temperatures to a second temperature that is less than both the first and second critical temperatures by a cryogenic refrigerator. A relative temperature difference between the first and second critical temperatures causes the flux directing layer to direct flux away from the first device and trap flux at the aperture location.

    Systems and methods for coupling qubits in a quantum processor

    公开(公告)号:US11494683B2

    公开(公告)日:2022-11-08

    申请号:US16955526

    申请日:2018-12-19

    Abstract: Josephson junctions (JJ) may replace primary inductance of transformers to realize galvanic coupling between qubits, advantageously reducing size. A long-range symmetric coupler may include a compound JJ (CJJ) positioned at least approximately at a half-way point along the coupler to advantageously provide a higher energy of a first excited state than that of an asymmetric long-range coupler. Quantum processors may include qubits and couplers with a non-stoquastic Hamiltonian to enhance multi-qubit tunneling during annealing. Qubits may include additional shunt capacitances, e.g., to increase overall quality of a total capacitance and improve quantum coherence. A sign and/or magnitude of an effective tunneling amplitude Δeff of a qubit characterized by a double-well potential energy may advantageously be tuned. Sign-tunable electrostatic coupling of qubits may be implemented, e.g., via resonators, and LC-circuits. YY couplings may be incorporated into a quantum anneaier (e.g., quantum processor).

Patent Agency Ranking