Abstract:
A magnetic valve (1) comprising a valve housing (2) defining an inlet opening (3) and an outlet opening (4), a valve seat (11), a valve closing element, and an armature tube (7) is disclosed. A piston (6) is arranged movably inside the armature tube (7), said piston (6) being connected to the valve closing element, and an armature (5) is arranged movably at least partly inside the piston (6). A coil (9) is arranged externally to the armature tube (7) in such a manner that at least a part of the armature (5) arranged inside the piston (6) is arranged inside the windings of the coil (9).
Abstract:
The invention relates to an actuator for a valve in a refrigeration system. The invention also relates to a valve with such actuator, and to a refrigeration system with such valve. The actuator comprises an elongated Shape Memory Alloy (SMA) element extending along two or more string-like extensions from a distant end to a proximate end in relation to a valve element of a valve. The SMA element, when forming part of the valve, may extend from the distant end to the proximate end connected to a housing of the SMA element, however, electrically insulated from the housing. An encapsulation may provide a thermal resistance, a thermal conductor and/or an electrical resistance between the SMA element and other elements or the surroundings of the SMA element.
Abstract:
The invention relates to an actuator for a valve in a refrigeration system. The invention also relates to a valve with such actuator, and to a refrigeration system with such valve. The actuator comprises an elongated Shape Memory Alloy (SMA) element extending along two or more string-like extensions from a distant end to a proximate end in relation to a valve element of a valve. The SMA element, when forming part of the valve, may extend from the distant end to the proximate end connected to a housing of the SMA element, however, electrically insulated from the housing. An encapsulation may provide a thermal resistance, a thermal conductor and/or an electrical resistance between the SMA element and other elements or the surroundings of the SMA element.
Abstract:
A magnetic valve (1) comprising a valve housing (2) defining an inlet opening (3) and an outlet opening (4), a valve seat (11), a valve closing element, and an armature tube (7) is disclosed. A piston (6) is arranged movably inside the armature tube (7), said piston (6) being connected to the valve closing element, and an armature (5) is arranged movably at least partly inside the piston (6). A coil (9) is arranged externally to the armature tube (7) in such a manner that at least a part of the armature (5) arranged inside the piston (6) is arranged inside the windings of the coil (9).
Abstract:
The invention relates to an actuator for a valve in a refrigeration system. The invention also relates to a valve with such actuator, and to a refrigeration system with such valve. The actuator comprises an elongated Shape Memory Alloy (SMA) element extending along two or more string-like extensions from a distant end to a proximate end in relation to a valve element of a valve. The SMA element, when forming part of the valve, may extend from the distant end to the proximate end connected to a housing of the SMA element, however, electrically insulated from the housing. An encapsulation may provide a thermal resistance, a thermal conductor and/or an electrical resistance between the SMA element and other elements or the surroundings of the SMA element.
Abstract:
Es wird ein Verfahren und eine Meßanordnung zum Messen eines Diffe¬ renzdrucks in strömenden Fluiden angegeben mit einer Primärleitung (2), die eine erste Meßstelle (4) und eine zweiten Meßstelle (5) aufweist, wo¬ bei zwischen der ersten und der zweiten Meßstelle (4, 5) eine Strömungs¬ änderung (3) in der Primärleitung (2), an der ersten Meßstelle (4) eine ers- te Sekundärleitung (6) und an der zweiten Meßstelle (5) eine zweite Se¬ kundärleitung (8) angeordnet ist, wobei man eine Absperrvorrichtung (7) in der ersten Sekundärleitung (6) anordnet und man einen ersten Druck (P1 ) in der ersten (6) und einen zweiten Druck (P2) in der zweiten Sekundärlei¬ tung (8) mißt. Man möchte dabei auf einfache Weise und mit einfachen Mitteln einen Differenzdruck messen. Hierzu ordnet man einen Begrenzer (9) in der zweiten Sekundärleitung (8) an und mißt bei geöffneter und bei geschlossener Absperrvorrichtung (7) mindestens jeweils einen der beiden Drücke (P1 , P2).