Abstract:
A refrigerant compressor includes a magnetic bearing assembly including insulation for the coils and lamination stack of the assembly. The lamination stack includes coil apertures extending axially between opposed axial faces. An insert partially extends into a first coil aperture to prevent direct contact between first and second coils. The insert includes a first leg extending into a slot formed in the lamination stack and a second leg radially spaced-apart from the first leg with the second leg extending axially into the first coil aperture. An annular cover having first and second legs extends into respective slots and apertures of the lamination stack. A second annular cover is provided on the opposite face of the coils that is connected to free ends of the second legs. The lamination stack and coils are coated with an insulative material such as epoxy.
Abstract:
This disclosure relates to an axial magnetic bearing for a centrifugal refrigerant compressor, and a corresponding system and method. A centrifugal refrigerant compressor system according to an exemplary aspect of the present disclosure includes, among other things, an impeller connected to a shaft, and a magnetic bearing system supporting the shaft. The magnetic bearing system includes an axial magnetic bearing, which itself includes a first permanent magnet configured to generate a first bias flux, a second permanent magnet axially spaced-apart from the first permanent magnet and configured to generate a second bias flux, and an electromagnet. The electromagnet includes a coil arranged radially outward of the first and second permanent magnets, and the electromagnet is configured to selectively generate either a first control flux or a second control flux to apply a force to the shaft in a first axial direction or second axial direction opposite the first axial direction, respectively.
Abstract:
This disclosure relates to a refrigerant compressor including a magnetic bearing assembly, and more particularly, to insulation for use in connection with the magnetic bearing assembly. In some aspects, the techniques described herein relate to a refrigerant compressor including an electric motor configured to rotationally drive an impeller via a shaft, and a radial magnetic bearing assembly including a lamination stack coated with an epoxy material.
Abstract:
A centrifugal compressor is disclosed. The compressor includes an impeller, an electromagnetic actuator, and a flow control insert. The flow control insert is selectively moveable in response to the electromagnetic actuator to regulate a flow of fluid expelled by the impeller.
Abstract:
A centrifugal compressor is disclosed. The compressor includes an impeller, an electromagnetic actuator, and a flow control insert. The flow control insert is selectively moveable in response to the electromagnetic actuator to regulate a flow of fluid expelled by the impeller.
Abstract:
An actuator assembly includes a first actuator, a second actuator, and a moving piece that is disposed between the first actuator and the second actuator. The moving piece is positionable to close a gap in the compressor.
Abstract:
An actuator assembly includes a first actuator, a second actuator, and a moving piece that is disposed between the first actuator and the second actuator. The moving piece is positionable to close a gap in the compressor.