Abstract:
A control system (1) for controlling a cooling system comprising two or more cooling entities (2) is disclosed. The control system comprises a central control unit (3), two or more entity controllers (4), each entity controller (4) being associated with one of the cooling entities (2), and each entity controller (4) being provided with a nearfield communication interface (6) allowing communication between the entity controller (4) and a portable device (7), via a nearfield communication channel, and a secured communication network (5) connecting the central control unit (3) with each of the entity controllers (4). The central control unit (3) is configured to generate blocking signals and/or unblocking signals and communicate the blocking signals and/or unblocking signals to each of the entity controllers (4), via the secured communication network (5). Each of the entity controllers (4) is configured to block and/or unblock the nearfield communication interface (6), in accordance with received blocking signals and/or unblocking signals.
Abstract:
A method for controlling a vapour compression system, in particular an opening degree of an expansion valve. According to a first control strategy, the expansion valve is closed until the superheat value has increased above a lower threshold superheat value. According to a second control strategy, the expansion valve is kept open until the suction pressure has increased above a lower threshold suction pressure value. In the case of low superheat value as well as low suction pressure, the second control strategy is selected for a limited period of time.
Abstract:
A method for controlling a vapour compression system (1) during start-up is disclosed. The rate of change, ΔΤ 1 , of the temperature of refrigerant entering the evaporator (4), and the rate of change, ΔΤ 2 , of the temperature of refrigerant leaving the evaporator (4) are compared. Based on the comparing step, a refrigerant filling state of the evaporator (4) is determined. The opening degree (11) of the expansion device (3) is then controlled according to a first control strategy in the case that it is determined that the evaporator (4) is full or almost full, and according to a second control strategy in the case that it is determined that the evaporator (4) is not full. Thereby it is ensured that a maximum filling degree of the evaporator (4) is quickly reached, without risking that liquid refrigerant passes through the evaporator (4).
Abstract:
A method for controlling a vapor compression system during start-up is disclosed. The rate of change, ΔT1, of the temperature of refrigerant entering the evaporator, and the rate of change, ΔT2, of the temperature of refrigerant leaving the evaporator are compared. Based on the comparing step, a refrigerant filling state of the evaporator is determined. The opening degree of the expansion device is then controlled according to a first control strategy in the case that it is determined that the evaporator is full or almost full, and according to a second control strategy in the case that it is determined that the evaporator is not full. Thereby it is ensured that a maximum filling degree of the evaporator is quickly reached, without risking that liquid refrigerant passes through the evaporator.