Abstract:
This scroll compressor includes first and second fixed scroll members, first and second orbiting scroll members, a first Oldham coupling provided between the first orbiting scroll member and the first fixed scroll member and configured to prevent rotation of the first orbiting scroll member with respect to the first fixed scroll member, and a second Oldham coupling provided between the second orbiting scroll member and the second fixed scroll member and configured to prevent rotation of the second orbiting scroll member with respect to the second fixed scroll member. The first Oldham coupling is slidably mounted with respect to the first fixed scroll member along a first displacement direction, and the second Oldham coupling is slidably mounted with respect to the second fixed scroll member along a second displacement direction parallel with respect to first displacement direction. First and second orbiting scroll members are configured to operate in phase opposition.
Abstract:
This scroll compressor includes a first fixed scroll member, an orbiting scroll arrangement including a first orbiting scroll member, a first Oldham coupling provided between the first orbiting scroll member and the first fixed scroll member and configured to prevent rotation of the first orbiting scroll member with respect to the first fixed scroll member, a fixed element opposite to the first fixed scroll member with respect to the orbiting scroll arrangement, and a second Oldham coupling provided between the orbiting scroll arrangement and the fixed element and configured to prevent rotation of the orbiting scroll arrangement with respect to the fixed element. The first Oldham coupling is slidable with respect to the first fixed scroll member along a first displacement direction, and the second Oldham coupling is slidable with respect to the fixed element along a second displacement direction transverse to the first displacement direction.
Abstract:
The oil injection device according to the invention includes an oil pump designed to be rotationally coupled to the electric motor of a compressor and including inlet and outlet ports, an oil injection duct connected to the first outlet port and designed to supply a compression stage of the compressor with oil, and an oil return duct connected to the first outlet port and designed to return the oil into an oil sump of the compressor. The pressure losses in the oil injection duct are primarily singular pressure losses proportional to the square of the oil flow rate passing through the oil injection duct. The pressure losses in the oil return duct are primarily pressure losses due to friction proportional to the oil flow rate passing through the oil return duct.