Abstract:
The scale of a scanner-scale is automatically calibrated in its installed location via a calibration system mounted within the scanner-scale. This system comprises an accelerometer 30 which determines gravity calibration data, preferably by measuring the local acceleration due to gravity, and transfers that data to a processor 26 which uses the measurement to calibrate the scale 22 for the installed location. This allows the measurement of weight via the scale to be specifically adjusted for the installed location. The system may further comprise additional sensors 36, such as temperature 32 and humidity sensors, which provide additional information for use in calibrating the accelerometer and adjusting the calibration data. The system may be integrated into the scanner-scale, or disposed within a housing separate from it, communicating via a port of the scanner-scale.
Abstract:
An optical code reader (80,150,180,210) forms images of an optical code on an object (20). The reader (80,150,180,210) comprises first and second viewing surfaces generally transverse to one another. The surfaces bound a viewing volume (64) in which the object (20) may be imaged. The reader (80,150,180,210) also comprises a set of one or more imagers (60) positioned on an opposite side of one or more of the first and second viewing surfaces relative to the viewing volume (64), and oriented and configured to capture images of the object (20) from at least three different views (62). Each of the views (62) passes through one of said first and second viewing surfaces. At least one of said views (62) passes through the first viewing surface, and at least one of said views (62) passes through the second viewing surface. The reader (80,150,180,210) also comprises at least one mirror (130), off which is reflected at least one of the views (62).
Abstract:
A data reader such as for example an imaging reader with a CCD or CMOS imager or the like, having multiple images of a target item illuminated or acquired from different directions in which the image signals are combined into a complete image of the item or selected portions of the item being read such that specular reflection (over-saturated regions of the sensor array) are minimized or eliminated. In one example data reader configuration, multiple illumination sources such as first and second rows of light emitting diodes (LED's) are aimed at the item being scanned from different directions. The illumination sources are alternately pulsed and return signals are collected at one or more sensor arrays. A selected non-saturated return signal from one of the illumination sources, or selected non-saturated portions of return signal from both of the illumination sources are processed to generate a complete non-saturated image of the target. In one preferred processing scheme, assuming that each of the LED's is capable of illuminating the entire target (e.g. a barcode), a pixel-by-pixel minimum is taken of the two images thereby producing an image with specular reflection minimized or nearly eliminated.
Abstract:
Fold mirrors (330) permit the imagers (340) to be closer to each other and permit an optical code reader (280), such as a tunnel scanner, to confine them to a smaller housing volume or capacity. A plurality of sets of fold mirrors (330) can also be employed to convey at least a portion of at least two different perspectives or two different depths of field (341, 343) of a composite view volume (281) to different regions (163, 165) of an image field (156) of a common imager (340). The sets of fold mirrors (330) may also include split mirrors that have mirror components that reflect images from different view volumes (334) to different imagers (340) or different regions (163, 165) of an image field (156) of a single imager (340).
Abstract:
A data reader, such as an optical code reader 100, 500 including one or more imagers 210, 235, the data reader having a generally horizontal central section 120, 520 with an upward extension 110, 510 on a first end 122, 522 and a depression 140, 540 on a second end 124, 524 opposite the upward extension 110, 520, the depression 140, 540 being configured to provide a better angle of view of an object 20 in the view volume above the central section 120, 520 from the second end 124, 524 from a position below the surface of the horizontal central section 120, 520. In one configuration, an image from the view volume along and over the depression 140 is directed by one or more fold mirrors 200 and focused by a lens system 205 onto an imager or sensor array 210, these optics components, along with the window 135, 535 through which they view, are all disposed below the surface of the central section 120, 520. Preferably, where the horizontal central section 120, 520 is a weigh platter for a scanner-scale, the optics of the data reader such as the fold mirror(s), lens system and imager are unsupported by the weigh platter and thus are off the scale.
Abstract:
An optical code or other data reading device (100) includes a color image sensor array (102) positioned to sense light reflected from an object (114), and to produce image data. In one configuration, the sensor array has multiple sets (e.g., first set (104) and second set (106)) of sensor elements that are sensitive to corresponding visible wavelength bands of light (e.g., first and second wavelength bands), the sets also being sensitive to light within an infrared wavelength band. An artificial illumination source (108) is positioned to illuminate the field of view (116) with light that is reflected off the object toward the sensor array, the illumination source being operable to produce infrared light having wavelengths within the infrared wavelength band so that, upon illumination, at least some sensor elements of each of the sets are sensitive to the infrared light and contribute to production of the image data.
Abstract:
Various improved imager-based optical code readers (500,800) and associated methods (3200,3300) are disclosed herein. According to one embodiment, an imager-based method reads an optical code (which may be, for example, a linear optical code such as a bar code) on an object in a viewing volume. The method comprises dividing (3310) an image plane (400) into a plurality of strip-shaped sections, viewing (3320) the object in the viewing volume from a plurality of perspectives, forming (3340) a plurality of strip-shaped images corresponding to the plurality of perspectives, respectively, thereby creating a composite image containing data from a plurality of perspectives, and processing at least a portion of the composite image so as to ascertain the information encoded in the optical code on the object in the viewing volume. Certain embodiments can mimic the performance of a laser-based scanner (100) without a laser or moving parts but instead utilizing an electronic imaging device such as an imager (508,808).