Abstract:
Un aparato (100) para reanimación cardiopulmonar que comprende: un ensamblaje de marco rígido que tiene un ensamblaje de soporte (102) que incluye un arco (110) y una placa posterior (112), el arco (110) y la placa posterior (112) colaboran para definir una abertura (106) que tiene una dimensión que permite la colocación de un torso de un ser humano (113) que comprende una espalda y un esternón, el arco (110) define un orificio pasante (207), el orificio (207) está posicionado en el arco (110) para permitir la colocación del esternón generalmente debajo del orificio (207) cuando la espalda se posiciona en la placa posterior (112); un módulo de compresión (200) que tiene: un tren motriz (201) que comprende un motor (210), un propulsor (209), y un ariete (220), donde el ariete (220) está conectado al motor (210) a través del propulsor (209); y una carcasa (203) que soporta el tren motriz (201) y tiene una dimensión tal que al menos una porción de la carcasa (203) encaja en el orificio (207) en una orientación que permite al ariete (220) moverse en una posición terapéutica respecto del torso (113) en el área del esternón y que permite que el ariete (220) sea correspondido, donde el esternón es comprimido lo suficiente para permitir la reanimación cardiopulmonar; un sistema de control (350) que tiene un microprocesador y un panel de control (352) para dirigir el movimiento del ariete (220); y una fuente eléctrica (400) conectada eléctricamente al sistema de control (350) y un motor (210); el aparato caracterizado por: el orificio (207) que tiene un cierre (284) integrado con el arco (110): y una primera montura de rápida desconexión (280) que forma una porción de la carcasa (203) y que encaja en el cierre (284) de forma que la primera montura de rápida desconexión (280) se engancha de manera extraíble al cierre (284) para conectar y desconectar el módulo de compresión (200) en o desde el arco (110); ello hace que el módulo de compresión (200) se pueda extraer del arco (110).
Abstract:
A video display coupled to an automatic external defibrillator (AED) and capable of full-motion video can support added functionality of the AED. One advantage of the video display is that it can be used to present standby status information of the AED quickly to an AED operator while the AED is in a low power standby mode or non-operative state. The video display may present status information in response to touching the display or activating a button while the AED is in a non-operative state. When the AED is in an operative state, such as during a rescue, the display may comprise a graphical user interface that may be navigated using touch-screen technology or buttons built into the AED. During a rescue, the video display may present live or stored electrocardiograms (ECGs) and instructions for operating the AED.
Abstract:
The connector between the patient electrode pads and the base unit of an automatic external defibrillator (AED) system can be formed by capturing a printed circuit board (PCB) within a connector housing. The PCB can have conductive metal traces that serve as the contact points between the wires from the patient electrodes and the electronics within the AED base unit. The PCB in combination with the conductive metal traces can be shaped similar to a conventional two-prong or two-blade connector. Employing such a PCB-based connector may result in AED pads which are less complex and less costly to manufacture. The PCB can also support a configuration circuit that is positioned between the conductive metal traces and that allows the AED to read and store information about the attached pads. For example, the AED can use this data storage feature to check the expiration date of the pads.
Abstract:
Battery powered systems with long standby times, such as automatic external defibrillators, may be required to indicate their operational status to a user by blinking lights or sounding speakers or buzzers. These active status indication activities consume power thereby reducing the battery life of the system. Automatically adjusting the level and frequency of these indication activities to match the ambient environment can reduce power consumption of the battery operated system. For example, in a dimly lit room, an indicator light may be visible even though it might be too dim to be seen in a bright room. Thus, if the room is dim, indicator lights can be dimmed to conserve power. These automatic adjustments made in response to the environment may help conserve power and extend battery life.
Abstract:
An autonomous mechanical CPR device is disclosed having a CPR unit attached to a free-standing support assembly. In operation, a victim is placed in the support assembly such that the CPR unit can compress the victim's chest. The CPR device is preferably portable, and it provides the recommended depth of chest compression at the recommended rate.