Abstract:
Transmitter signals are modulated with one or more codes which may represent a pulse even though the code(s) are not shaped as pulses. The code(s) may be generated by defining a pulse by its Fourier components, and then adding random phases to the Fourier components. A time-domain signal may then be created, which may serve as the code to be modulated on a carrier wave. Upon reflection of the transmitter signal, the received signal may be processed by a receiver to recover the pulse. The time-of-flight of the transmitter signal can then be determined, enabling distance measurements to be made.
Abstract:
Methods and apparatus for detecting waves are disclosed. The waves are detected by modulating an optical carrier signal having a carrier signal frequency component at a carrier frequency w,ith wave signals at one or more detection frequencies, optically removing the carrier signal frequency component from the modulated optical carrier signal, and detecting an energy level of the modulated optical carrier signal after removal of the carrier signal frequency component, the energy level indicative of the presence of the wave signals.
Abstract:
Embodiments of the present invention may provide a relative angular motion measurement system that includes a remote device used to control operations of a host device. The remote may include a plurality of light sources with predetermined light distribution patterns and angles of orientation with respect to a major axis of the remote. The host device may include a sensor and a controller. The sensor may detect light emitted from the remote (via the light sources) and generate output signals that may be interpreted by the controller. The controller may interpret the output signals from the sensor to estimate received intensity from each light source and calculate the orientation of the remote device based on data representing the light sources' light distribution patterns with fixed angles of orientation.
Abstract:
Methods and devices for calculating the position of a movable device are disclosed. The device may include multiple optical detectors (ODs) and the movable device may include light sources. Optics may be above the ODs. A controller may calculate the position of the light source based on data from the ODs and properties of the optics. The device may be a game console, and the light source may be a game controller. The roles of the OD and light sources may be interchanged. The rotation of the movable device may be determined using multiple light sources and/or multiple ODs on the movable device. The movable device may calculate its position and transmit it to a console. The light sources may be modulated by time or frequency to distinguish between the light sources. There may be two or more movable devices. There may be two or more consoles.
Abstract:
A method including: (i) modulating (105) multiple components (e.g., different spatial regions, different wavelengths, or both) of electromagnetic radiation emerging from an object with different time-varying functions; (ii) measuring at least one time-varying signal derived from the modulated electromagnetic radiation emerging from the object; and (iii) reconstructing information about the object based on the measured signal and the time-varying functions.