Abstract:
A fiber is obtainable from or comprises an ethylene/α-olefm interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
Abstract:
An improved process for winding an elastic fiber onto a core for forming a package and/or warp beam for use in knitting or weaving operations is disclosed. The improvement comprises forming the elastic fiber into a shape having a fiber cross section such that the width of the fiber is at least three times the thickness of the fiber prior to winding the fiber onto the supply package. Another aspect of the invention involves forming elastic fiber using a extrusion melt spinning process with a die having one or more openings which have two generally perpendicular axes, wherein one axis is at least about 1.5, preferably at least about 3 times longer than the other axis. The fiber of the present invention having the elongated cross section can be used to make improved supply packages for knitting or weaving fabric and also for making improved nonwoven structures and improved binder fibers.
Abstract:
The present invention relates to crosslinked, olefin elastic fibers where the olefin materials are specifically selected to provide a more robust fiber with higher tenacity and greater temperature stability. Such fibers will be less subject to breakage during fiber spinning and post-spinning (downstream processing) operations including spool formation and unwinding. The specific olefin material used is a blend having an overall melt index (I2) of less than 2.5 g/10 min before crosslinking with a density in the range of 0.865 to 0.885 g/cm 3 . One component of the blend will be characterized as having either a density in the range of from 0.855 to 0.88 g/cm 3 or a residual crystallinity at 80 °C of greater than 9 percent but not both. The at least one other component will meet at least whichever characteristic the first component does not meet.
Abstract translation:本发明涉及交联的烯烃弹性纤维,其中烯烃材料被特别选择以提供具有更高韧性和更高温度稳定性的更坚固的纤维。 在纤维纺丝和后纺(下游处理)操作中,这种纤维将不会发生断裂,包括卷筒形成和展开。 使用的特定烯烃材料是在0.865至0.885g / cm 3范围内的密度交联之前具有小于2.5g / 10min的总体熔体指数(I 2)的共混物。 共混物的一种组分将被表征为具有在0.855至0.88g / cm 3范围内的密度或在80℃下的残余结晶度大于9%,但不是均为二者。 至少一个其他组件将至少满足第一个组件不符合的特征。
Abstract:
A fiber is obtainable from or comprises a propylene/α-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non- woven fabrics can be made from such fibers.
Abstract:
Elastic fibers are described that comprise (i) a polyolefin polymer, e.g., a homogeneously branched, preferably substantially linear, ethylene polymer, and (ii) a photoinitiator, e.g., an aromatic ketone, in an amount sufficient to effect at least a partial cross-linking of the polymer when the fiber is exposed to sufficient UV -radiation to activate the photoinitiator. Articles, e.g., fabrics, comprising fibers of this invention, either alone or in combination with one or more other fibers, e.g., cellulose, nylon, etc., exhibit good heat resistance and elasticity at elevated temperatures.
Abstract:
Fibers having improved resistance to moisture at elevated temperatures comprise at least two elastic polymers, one polymer heat-settable and the other polymer heat-resistant, the heat-resistant polymer comprising at least a portion of the exterior surface of the fiber. The fibers typically have a bicomponent and/or a biconstituent core/sheath morphology. Typically, the core comprises an elastic thermoplastic urethane, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer.
Abstract:
The elasticity of elastic, absorbent structures, e.g., diapers, is improved without a significant compromise of the absorbency of the structure by the use of bicomponent and/or biconstituent elastic fibers. The absorbent structures typically comprise a staple fiber, e.g., cellulose fibers, and a bicomponent and/or a biconstituent elastic. The bicomponent fiber typically has a core/sheath construction. The core comprises an elastic thermoplastic elastomer, preferably a TPU, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer. In various embodiments of the invention, the elasticity is improved by preparation techniques that enhance the ratio of elastic fiber: cellulose fiber bonding versus cellulose fiber: cellulose fiber bonding. These techniques include wet and dry high intensity agitation of the elastic fibers prior to mixing with the cellulose fibers, deactivation of the hydrogen bonding between cellulose fibers, and grafting the elastic fiber with a polar group containing compound, e.g. maleic anhydride.
Abstract:
An improved process for winding an elastic fiber onto a core for forming a package and/or warp beam for use in knitting or weaving operations is disclosed. The improvement comprises forming the elastic fiber into a shape having a fiber cross section such that the width of the fiber is at least three times the thickness of the fiber prior to winding the fiber onto the supply package. Another aspect of the invention involves forming elastic fiber using a extrusion melt spinning process with a die having one or more openings which have two generally perpendicular axes, wherein one axis is at least about 1.5, preferably at least about 3 times longer than the other axis. The fiber of the present invention having the elongated cross section can be used to make improved supply packages for knitting or weaving fabric and also for making improved nonwoven structures and improved binder fibers.
Abstract:
Fibers having improved resistance to moisture at elevated temperatures comprise at least two elastic polymers, one polymer heat-settable and the other polymer heat-resistant, the heat-resistant polymer comprising at least a portion of the exterior surface of the fiber. The fibers typically have a bicomponent and/or a biconstituent core/sheath morphology. Typically, the core comprises an elastic thermoplastic urethane, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer.
Abstract:
Thermoplastic compositions particularly adapted for use in preparing extruded fibers and films for carpets, rugs, woven fabrics, non-woven or spun-bonded fabrics, knit fabrics, garments, laminates, constructions, or other applications and a method for the formation thereof.