Abstract:
A method of producing an alcohol ethoxylate surfactant or lubricant, the method including reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, the low molecular weight initiator having a nominal hydroxyl functionality at least 1, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R 1 ) I (R 2 ) I (R 3 ) I (R 4 ) 0 or 1 , whereas M is boron, aluminum, indium, bismuth or erbium, R 1 , R 2 , R 3 , and R 4 are each independent, R 1 includes a first fluoroalkyl-substituted phenyl group, R 2 includes a second fluoroalkyl-substituted phenyl group or a first fluoro/chloro- substituted phenyl group, R 3 includes a third fluoroalkyl-substituted phenyl group or a second fluoro/chloro-substituted phenyl group, and optional R 4 includes a functional group or functional polymer group, R 1 being different from at least one of R 2 and R 3 . The method further including forming an alcohol ethoxylate surfactant or lubricant having a number average molecular weight of greater than the number average molecular weight of the low molecular weight initiator in the presence of the Lewis acid catalyst.
Abstract:
A process for preparing a divinylarene oxide including (a) reacting (i) at least one divinylarene; (ii) at least one peroxycarboximidic acid; (iii) at least one solvent; and (iv) at least one basic compound, under reaction conditions to form a reaction effluent containing a divinylarene oxide product; and then (b) evaporating the reaction effluent of step (a) to form a concentrate containing the divinylarene oxide product; and wherein the concentrate separates into two liquid phases.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes a mixture of an alcohol (1) and an alcohol (2). Alcohol (1) has the Structure (1) : alcohol (2) has the Structure (2): wherein a is an integer from 1 to 2, R1 and R2 each independently is selected from the group consisting of hydrogen and an alkyl group, with the proviso that the total number of carbon atoms of R1 and R2 is 7, and R3 is selected from the group consisting of a butyl group, an isobutyl group, a pentyl group, and an isopentyl group.
Abstract:
A method for suppressing the formation of ammonia comprising providing a carrier material to a container having a headspace; providing a bacteria, an acidifier and an odor inhibitor to the carrier material, the bacteria comprising Staphylococcus-xylosus or Staphylococcus-cohnii bacteria, and the odor inhibitor comprising a salt of an aminopolycarboxylic acid compound; and applying animal waste to the carrier material; wherein there is a 5 to 98 percent improvement of ammonia content in the headspace as compared to an untreated control comprising a container containing the carrier material and the bacteria and not contain the odor inhibitor.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes 2-heptylundecanol; a member selected from the group consisting of 2-ethyhexanol and 2-propylheptanol; and a mixture of an alcohol (1) and an alcohol (2), alcohol (1) having the Structure (1) wherein R1 is selected from the group consisting of an ethyl group and a propyl group, R2 and R3 each independently is selected from the group consisting of hydrogen and an alkyl group, with the proviso that the total number of carbon atoms of R1 and R2 is 7, and alcohol (2) having the Structure (2) wherein R4 is selected from the group consisting of an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
Abstract:
The present disclosure provides a process. In an embodiment, the process includes providing a purge stream composed of octene isomers. The process includes subjecting the purge stream to hydroformylation conditions, and forming a reaction product composed of nonanals.
Abstract:
Provided are proppants for use in hydraulic fracturing operations. The proppants comprise particles having coatings disposed on them as described herein. The proppants exhibit reduced dust generation, for instance during transloading, conveying and/or offloading of the proppant at a wellsite and/or at intermediate shipping transload points.
Abstract:
A method of producing an alcohol ethoxylate surfactant or lubricant includes reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, the low molecular weight initiator having a nominal hydroxyl functionality at least 1, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R 1 )1(R 2 )1(R 3 )1(R 4 ) 0 or 1 , whereas M is boron, aluminum, indium, bismuth or erbium, R 1 , R 2 and R 3 each includes a same fluoroalkyl-substituted phenyl group, and optional R 4 includes a functional group or functional polymer group. R 1 , R 2 , and R 3 are the same fluoroalkyl-substituted phenyl group. The method further includes forming the alcohol ethoxylate surfactant or lubricant having a number average molecular weight of greater than the number average molecular weight of the low molecular weight initiator in the presence of the Lewis acid catalyst.
Abstract:
A composition comprising an inert material; a liquid binder; and an odor inhibitor, wherein the odor inhibitor is a salt of an aminopolycarboxylic acid compound. A method for preparing a composition comprising providing an odor inhibitor, wherein the odor inhibitor is a salt of an aminopolycarboxylic acid compound; providing an inert material, wherein the inert material comprises particles having a mean particle size less than 1000 microns; mixing the odor inhibitor the inert material in a high-shear mixer; introducing a liquid binder to the mixer; and mixing the liquid binder, the non-porous inert material and the odor inhibitor until granules form which are 200 to 2500 microns in diameter.
Abstract:
A process for separating a divinyl hydrocarbon from a composition mixture stream containing at least a divinyl hydrocarbon and other components, the process including (a) passing a composition mixture feed stream containing at least (i) a divinyl hydrocarbon; and (ii) a monovinyl hydrocarbon, and/or (iii) a non-vinyl hydrocarbon through a process-scale chromatography unit; wherein the process scale chromatography unit includes a ligand exchange media comprising a metal adapted to form a ligand with an olefin functionality; wherein the metal of the ligand exchange media is loaded on an adsorbent; and wherein the divinyl hydrocarbon is adsorbed onto the ligand exchange media; (b) passing a weak first elution solvent through the unit to elute the monovinyl hydrocarbon and/or the non-vinyl hydrocarbon from the unit; (c) passing a strong second elution solvent through the unit to elute the divinyl hydrocarbon product stream from the unit; and (d) recovering the divinyl hydrocarbon product stream having been separated from the other components in the composition mixture stream; and an apparatus therefor.